• Title/Summary/Keyword: Probabilistic Directional Design Hour Volume

Search Result 2, Processing Time 0.014 seconds

A Theoretical Analysis of Probabilistic DDHV Estimation Models (확률적인 중방향 설계시간 교통량 산정 모형에 관한 이론적 해석)

  • Cho, Jun-Han;Kim, Seong-Ho;Rho, Jeong-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.199-209
    • /
    • 2008
  • This paper is described the concepts and limitations for the traditional directional design hour volume estimation. The main objective of this paper is to establish an estimation method of probabilistic directional design hour volume in order to improve the limitation for the traditional approach method. To express the traffic congestion of specific road segment, this paper proposed the link travel time as the probability that the road capacity can accommodate a certain traffic demand at desired service level. Also, the link travel time threshold was derived from chance-constrained stochastic model. Such successive probabilistic process could determine optimal ranked design hour volume and directional design hour volume. Therefore, the probabilistic directional design hour volume can consider the traffic congestion and economic aspect in road planning and design stage. It is hoped that this study will provide a better understanding of various issues involved in the short term prediction of directional design hourly volume on different types of roads.

An Experimental Analysis of a Probabilistic DDHV Estimation Model (확률적인 중방향 설계시간 교통량 산정 모형에 관한 실험적 해석)

  • Jo, Jun-Han;Kim, Seong-Ho;No, Jeong-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.23-34
    • /
    • 2009
  • This paper is described as an experimental analysis for the probabilistic directional design hour volume estimation. The main objective of this paper is to derive acceptable design rankings, PK factors, and PD factors. In order to determine an appropriate distribution for acceptable design rankings, 12 probability distribution functions were employed. The parameters were estimated based on the method of maximum likelihood. The goodness of fit test was performed with a Kolmogorov-Smirnov test. The Beta General distribution among the probability distributions was selected as an appropriate model for 2 lane roadways. On the other hand, the Weibull distribution is superior for 4 lanes. The method of the inverse cumulative distribution function came up with an acceptable design ranking of design for LOS D. An acceptable design ranking of 2 lanes is 190, while an acceptable design ranking for 4 lanes is 164. The PK factor and PD factor of 2 lanes was elicited for 0.119 (0.100-0.139) and 0.568 (0.545-0.590), respectively. On the other hand, the PK factor and PD factor for 4 lanes was elicited as 0.106 (0.097-0.114) and 0.571 (0.544-0.598), respectively.