• Title/Summary/Keyword: Probabilistic Density

Search Result 193, Processing Time 0.028 seconds

Harmonics Analysis of Railroad Systems using Probabilistic Approach (철도계통 고조파 분석에 확률론적 방법 적용)

  • Song, Hak-Seon;Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.214-216
    • /
    • 2005
  • A magnitude of generated harmonic currents along with the operation of traction has nonlinear characteristics. The harmonic currents generated along with the operating speed of electrical railroad traction is to analyze very difficulty. This paper therefore presents probabilistic approach for the harmonic currents evaluation about the operating speed of the arbitrary single traction. To use probabilistic method for railroad system, probability density function(PDF) using measuring data based on the realistic harmonic currents per operating speed is calculated. Mean and variance of harmonic currents of single traction also are obtained the PDF of the operating speed and electrical railroad traction model. Uncertainty of harmonic currents expects to results through mean and variance with PDF. The probability of harmonic currents generated with the operating of arbitrary many tractions is calculated by the convolution of functions. The harmonics of different number of tractions are systematically investigated. It is assessed by the total demand distortion(TDD) for the railroad system.

  • PDF

Holistic Approach to Multi-Unit Site Risk Assessment: Status and Issues

  • Kim, Inn Seock;Jang, Misuk;Kim, Seoung Rae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.286-294
    • /
    • 2017
  • The events at the Fukushima Daiichi Nuclear Power Station in March 2011 point out, among other matters, that concurrent accidents at multiple units of a site can occur in reality. Although site risk has been deterministically considered to some extent in nuclear power plant siting and design, potential occurrence of multi-unit accident sequences at a site was not investigated in sufficient detail thus far in the nuclear power community. Therefore, there is considerable worldwide interest and research effort directed toward multi-unit site risk assessment, especially in the countries with high-density nuclear-power-plant sites such as Korea. As the technique of probabilistic safety assessment (PSA) has been successfully applied to evaluate the risk associated with operation of nuclear power plants in the past several decades, the PSA having primarily focused on single-unit risks is now being extended to the multi-unit PSA. In this paper we first characterize the site risk with explicit consideration of the risk associated with spent fuel pools as well as the reactor risks. The status of multi-unit risk assessment is discussed next, followed by a description of the emerging issues relevant to the multi-unit risk evaluation from a practical standpoint.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

Probabilistic Method for The Harmonic Analysis of Railroad Feeding System (철도급전시스템의 고조파 평가를 위한 확률론적 방법)

  • Lee, Seung-Hyuk;Song, Hak-Seon;Lee, Jun-Kyong;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.9
    • /
    • pp.384-391
    • /
    • 2006
  • The harmonic currents generated along with the operating speed of electrical railroad traction are very difficult to analyze because of its nonlinear characteristics. This paper therefore presents probabilistic approach for the evaluation of harmonic currents about the operating speed of the arbitrary single traction. To use probabilistic method for railroad system, PDF(Probability Density Function) using measuring data based on the realistic h 따 monic currents per operating speed is calculated. Measuring data of harmonic current per operating speed is obtained using the result data of PSCAD/EMTDC dynamic simulation based on an IAT(Intra Airport Transit) in Incheon International Airport. The means(expected values) and variances of harmonic currents of single traction also are obtained by the PDF of the operating traction speed and harmonic currents. The uncertainty of harmonic currents can be calculated through the mean and variance of PDF. The probability of harmonic currents generated with the operating of arbitrary many tractions is calculated by the convolution of functions. The harmonics of different number of tractions are systematically investigated to assess the TDD(Total Demand Distortion) for the railroad system. The calculation of TDD was carried out using Monte-Carlo Simulations(MSCs) and the results of TDD evaluation of the power quality in the IAT power feeding system.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Probabilistic Modeling of Fiber Length Segments within a Bounded Area of Two-Dimensional Fiber Webs

  • Chun, Heui-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.301-317
    • /
    • 2011
  • Statistical and probabilistic behaviors of fibers forming fiber webs of all kinds are of great significance in the determination of the uniformity and physical properties of the webs commonly found in many industrial products such as filters, membranes and non-woven fabrics. However, in studying the spatial geometry of the webs the observations must be theoretically as well as experimentally confined within a specified unit area. This paper provides a general theory and framework for computer simulation for quantifying the fiber segments bounded by the unit area in consideration of the "edge effects" resulting from the truncated length segments within the boundary. The probability density function and the first and second moments of the length segments found within the counting region were derived by properly defining the seeding region and counting region.

Probabilistic assessment on the basis of interval data

  • Thacker, Ben H.;Huyse, Luc J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.331-345
    • /
    • 2007
  • Uncertainties enter a complex analysis from a variety of sources: variability, lack of data, human errors, model simplification and lack of understanding of the underlying physics. However, for many important engineering applications insufficient data are available to justify the choice of a particular probability density function (PDF). Sometimes the only data available are in the form of interval estimates which represent, often conflicting, expert opinion. In this paper we demonstrate that Bayesian estimation techniques can successfully be used in applications where only vague interval measurements are available. The proposed approach is intended to fit within a probabilistic framework, which is established and widely accepted. To circumvent the problem of selecting a specific PDF when only little or vague data are available, a hierarchical model of a continuous family of PDF's is used. The classical Bayesian estimation methods are expanded to make use of imprecise interval data. Each of the expert opinions (interval data) are interpreted as random interval samples of a parent PDF. Consequently, a partial conflict between experts is automatically accounted for through the likelihood function.

Probabilistic characteristics of damping in buildings

  • Fang, J.Q.;Li, Q.S.;Jeary, A.P.;Liu, D.K.;Wong, C.K.
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • This paper describes probabilistic characteristics of damping in a tall building based on the results of full-scale measurement. It is found, through statistical analysis of the damping data, that the probability density function(PDF) of damping at the high amplitude plateau can be well represented by Normal distribution (Gaussian distribution). A stochastic damping model is proposed to estimate amplitude-dependent damping for practical application.

A Study of Automatic Multi-Target Detection and Tracking Algorithm using Highest Probability Data Association in a Cluttered Environment (클러터가 존재하는 환경에서의 HPDA를 이용한 다중 표적 자동 탐지 및 추적 알고리듬 연구)

  • Kim, Da-Soul;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1826-1835
    • /
    • 2007
  • In this paper, we present a new approach for automatic detection and tracking for multiple targets. We combine a highest probability data association(HPDA) algorithm for target detection with a particle filter for multiple target tracking. The proposed approach evaluates the probabilities of one-to-one assignments of measurement-to-track and the measurement with the highest probability is selected to be target- originated, and the measurement is used for probabilistic weight update of particle filtering. The performance of the proposed algorithm for target tracking in clutter is compared with the existing clustering algorithm and the sequential monte carlo method for probability hypothesis density(SMC PHD) algorithm for multi-target detection and tracking. Computer simulation studies demonstrate that the HPDA algorithm is robust in performing automatic detection and tracking for multiple targets even though the environment is hostile in terms of high clutter density and low target detection probability.