• Title/Summary/Keyword: Probabilistic Collision Risk Assessment

Search Result 4, Processing Time 0.019 seconds

Recursive Probabilistic Approach to Collision Risk Assessment for Pedestrians' Safety (재귀적 확률 갱신 방법을 이용한 보행자 충돌 위험 판단 방법)

  • Park, Seong-Keun;Kim, Beom-Seong;Kim, Eun-Tai;Lee, Hee-Jin;Kang, Hyung-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.475-480
    • /
    • 2011
  • In this paper, we propose a collision risk assesment system. First, using Kalman Filter, we estimate the information of pedestrian, and second, we compute the collision probability using Monte Carlo Simulations(MCS) and neural network(NN). And we update the collision risk using time history which is called belief. Belief update consider not only output of Kalman Filter of only current time step but also output of Kalman Filter up to the first time step to current time step. The computer simulations will be shown the validity of our proposed method.

Maintenance of the Sea-crossing Bridge for Ship Collision Problems (선박충돌 문제에 대한 해상교량의 유지관리)

  • Bae, Yong-Gwi;Lee, Seong-Lo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.56-64
    • /
    • 2016
  • Damage of sea-crossing bridge by ship collision is related to estimate frequencies of overloading due to impact, and bridge accordingly must be designed to satisfy related acceptance criteria. Another important aspect is the management on increment of collision risk during the service period. In this study, related plan, main span length, air draft clearance and collision risk are analyzed for the interim assessment of Incheon Bridge focusing on the ship collision problem. In particular, for the increment of collision risk, the optimized navigation speed is proposed by reviewing the research findings and navigation guidelines etc. as a temporary expedient. Also basic procedure for reasonable prediction of target vessel and passage is established and probabilistic prediction method to embrace the uncertainty of the prediction is proposed as a fundamental solution. It is necessary to conduct further research on collision risk management and promptly carry out interim assessments of other marine bridges.

A Case Study for the Selection of a Railway Human Reliability Analysis Method (철도 인간신뢰도분석 방법 선정을 위한 사례분석)

  • Jung, Won-Dea;Jang, Seung-Cheol;Wang, Jong-Bae;Kim, Jae-Whan
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.532-538
    • /
    • 2006
  • The railway human reliability analysis(R-HRA) plays a role of identifying and assessing human failure events in the framework of the probabilistic risk assessment(PRA) of the railway systems. This study introduces a case study that was performed to select an appropriate R-HRA method. Three HRA methods were considered in the case study: (1) the K-MRA(THERP/ASEP-based) method, (2) the HEART method, (3) the RSSB-HRA method. Two case events were selected based on the review of the railway incidents/accidents, which include (1) a real-end collision event, which occurred on the railway between the Gomo and Kyungsan stations in 2003, (2) the signal passed at danger(SPAD) events, which are caused from a variety of factors. The three HRA methods were applied to both case events, and then the strengths and limitations of each method were derived and compared with each other from the viewpoint of the applicability of a HRA method to the railway industry.

Unified Control of Independent Braking and Steering Using Optimal Control Allocation Methods for Collision Avoidance (전(全)방향 충돌 회피를 위한 액츄에이터 최적 분배 알고리즘)

  • Kim, Kyuwon;Kim, Beomjun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.11-16
    • /
    • 2013
  • This paper presents a unified control algorithm of independent braking and steering for collision avoidance. The desired motion of the vehicle in the yaw plane is determined using the probabilistic risk assessment method based on target state estimation. For the purpose of coordinating the independent braking and steering, a non-linear vehicle model has been developed, which describes the vehicle dynamics in the yaw plane in both linear and extended non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints. The performance of the proposed control algorithm has been investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.