• Title/Summary/Keyword: Probabilistic Analysis

Search Result 1,536, Processing Time 0.026 seconds

Development of Seismic Fragility Curves for Slopes Using ANN-based Response Surface (인공신경망 기반의 응답면 기법을 이용한 사면의 지진에 대한 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.31-42
    • /
    • 2016
  • Usually the seismic stability analysis of slope uses the pseudostatic analysis considering the inertial force by the earthquake as a static load. Geostructures such as slope include the uncertainty of soil properties. Therefore, it is necessary to consider probabilistic method for stability analysis. In this study, the probabilistic stability analysis of slope considering the uncertainty of soil properties has been performed. The fragility curve that represents the probability of exceeding limit state of slope as a function of the ground motion has been established. The Monte Carlo Simulation (MCS) has been implemented to perform the probabilistic stability analysis of slope with pseudostatic analysis. A procedure to develop the fragility curve by the pseudostatic horizontal acceleration has been presented by calculating the probability of failure based on the Artificial Neural Network (ANN) based response surface technique that reduces the required time of MCS. The results showed that the proposed method can get the fragility curve that is similar to the direct MCS-based fragility curve, and can be efficiently used to reduce the analysis time.

Disaster-Prevention System of Transportation Network used by GIS and Seismic Fragility Analysis (GIS 및 지진취약도 분석기법을 이용한 교통 네트워크의 방재 시스템)

  • Lee, Hyung-Jin;Park, Byung-Hee;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.25-35
    • /
    • 2006
  • Recently seismic fragility analysis method has been widely used for the seismic probabilistic risk assessment of infrastructures such as nuclear power plants, buildings and bridges because of its probabilistic characteristics. Furthermore, this technique has been applied to large-scale social systems consisted of each infrastructures by combing GIS. In this paper, the applicability of this technique to domestic infrastructural systems was studied. The transportation network was selected as one of these domestic infrastructural systems. Example studies were peformed about Changwon city. Nonlinear time history analysis, with a maximal likelihood approach were conducted to establish the fragility curves of each infrastrucures (bridges). GIS analysis was also applied to the analysis of whole infrastructural systems. The results show that it is very useful to predict seismic probabilistic risk assessment of this domestic transportation network. However, it also shows that further studies such as more suitable damage criterion to domestic structure and precise nonlinear analysis techniques should be developed to predict more precise results.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Residual Longitudinal Strength of a VLCC Considering Probabilistic Damage Extents (확률론적 손상을 고려한 VLCC 잔류 종강도 평가)

  • Nam, Ji-Myung;Choung, Joon-Mo;Park, Ro-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.124-131
    • /
    • 2012
  • This paper provides prediction of ultimate longitudinal strengths of hull girder of a VLCC considering probabilistic damage extents due to collision and grounding accidents based on IMO Guideline(2003). The probability density functions of damage extents are expressed as a function of nondimensional damage variables. The accumulated probability levels of 10%, 30%, 50%, and 70% are taken into account for the damage extent estimation. The ultimate strengths have been calculated using in-house software UMADS (Ultimate Moment Analysis of Damaged Ships) which is based on the progressive collapse method. Damage indices are provided for all heeling angles due to any possible flooding of compartments from $0^{\circ}$ to $180^{\circ}$ which represent from sagging to hogging conditions, respectively. The analysis results reveal that minimum damage indices show different values according to heeling angles and damage levels.

Probabilistic Approach for Fatigue Life of Composite Materials with Impact-Induced Damage (충격손상 복합재료의 피로수명에 대한 통계적 해석 연구)

  • Kang, Ki-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3148-3154
    • /
    • 2010
  • This paper presents the probabilistic analysis for fatigue life of Glass/Epoxy laminates with impact-induced damage. For this, a series of impact tests were perfomed on the Glass/Epoxy laminates using instrumented impact testing machine. Then, tensile and fatigue tests carried out so as to generate post-impact residual strength and fatigue life. Two Parameter Weibull distribution was used to fit the residual strength and fatigue life data of Glass/Epoxy composite laminates. The residual strength was affected by impact energy and their variance decreased with increasing of impact energy. The fatigue life of impacted laminates was greatly reduced by impact energy and this trend depended on applied stress amplitude. Additionally, the variation of fatigue life was gradually decreased with the applied stress amplitude.

Design Improvement for the Cooling System of the Interim Spent Fuel Storage Facility Using a PSA Method

  • Ko, Won-Il;Park, Jong-Won;Park, Seong-Won;Lee, Jae-Sol;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.440-451
    • /
    • 1996
  • With emphasis on safety, this study addresses for better design condition for the cooling system in a wet-type interim spent fuel storage facility, using a probabilistic safety assessment method. To incorporate the design renovation into the design phase, a simple approach is proposed. By taking the cooling system of a reference design, a fault tree analysis was performed to identify the weak point of the considered system, and then basic factors for design renovation were defined. A total of 21 design alternatives were selected through the combination of the basic factors. Finally, the optimum design alternative for the cooling system is derived by means of the cost and effect analysis based on the estimated cost, system reliability and assumed probabilistic safety criteria. With the assumption that the failure frequency of at-reactor spent fuel cooling system compiles with probabilistic safety criteria for the interim spent fuel cooling system, it was shown that the optimum alternative should have l00% cooling loop redundancy with one pump per cooling loop and a cleanup system installed separately from the main loop. Furthermore, it also should be classified into safety system. The result of this study can be used as a useful basis to identify factors of safety concern and to establish design requirements in the future. The method also can be applied for other nuclear facilities.

  • PDF

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

Probabilistic distribution of displacement response of frictionally damped structures excited by seismic loads

  • Lee, S.H.;Youn, K.J.;Min, K.W.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.363-372
    • /
    • 2010
  • Accurate peak response estimation of a seismically excited structure with frictional damping system (FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated the peak response of the structure with FDS by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In case that earthquake excitation is defined probabilistically, corresponding response of the structure with FDS becomes to have probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake excitation generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Coefficients of the proposed PDF are obtained by regression of the statistical distribution of the time history responses. Finally, the correlation between the resulting PDFs and statistical response distribution is investigated.

A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+ (APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석)

  • Moon, Horim;Kim, Han Gon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

UNCERTAINTY AND SENSITIVITY STUDIES WITH THE PROBABILISTIC ACCIDENT CONSEQUENCE ASSESSMENT CODE OSCAAR

  • HOMMA TOSHIMITSU;TOMITA KENICHI;HATO SHINJI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-258
    • /
    • 2005
  • This paper addresses two types of uncertainty: stochastic uncertainty and subjective uncertainty in probabilistic accident consequence assessments. The off-site consequence assessment code OSCAAR has been applied to uncertainty and sensitivity analyses on the individual risks of early fatality and latent cancer fatality in the population outside the plant boundary due to a severe accident. A new stratified meteorological sampling scheme was successfully implemented into the trajectory model for atmospheric dispersion and the statistical variability of the probability distributions of the consequence was examined. A total of 65 uncertain input parameters was considered and 128 runs of OSCAAR with 144 meteorological sequences were performed in the parameter uncertainty analysis. The study provided the range of uncertainty for the expected values of individual risks of early and latent cancer fatality close to the site. In the sensitivity analyses, the correlation/regression measures were useful for identifying those input parameters whose uncertainty makes an important contribution to the overall uncertainty for the consequence. This could provide valuable insights into areas for further research aiming at reducing the uncertainties.