• Title/Summary/Keyword: Probabilistic Analysis

Search Result 1,526, Processing Time 0.027 seconds

Probabilistic stability analysis of underground structure using stochastic finite element method

  • Na, Sang-Min;Moon, Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.192-197
    • /
    • 2003
  • It can be said that rock mass properties are characterized not by a mean value but by values with variation due to its characteristic uncertainty. This characteristic is one of the most important parts for the design of underground structures, but yet to be fully examined. Stochastic finite element method (SFEM) has been developed in order to take the randomness of structural systems into account. Using SFEM, the response variability of structural system can be obtained and it leads probabilistic stability of structure to be analyzed. In this study, displacements response variability of circular opening with hydrostatic stress field are analyzed in terms of rock mass properties having a certain mean and a standard deviation using the SFEM. The analyzed response variability shows that the necessity of probabilistic stability analysis of underground structures using reliable mean value and standard deviation of deformation modulus.

  • PDF

A Probabilistic Reasoning in Incomplete Knowledge for Theorem Proving (불완전한 지식에서 정리증명을 위한 확률추론)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • We present a probabilistic reasoning method for inferring knowledge about mathematical truth before an automated theorem prover completes a proof. We use a Bayesian analysis to update beleif in truth, given theorem-proving progress, and show how decision-theoretic methods can be used to determine the value of continuing to deliberate versus taking immediate action in time-critical situations.

  • PDF

An Analysis for Delaminations in CFRP Laminates (CFRP 적층복합재료의 층간분리 평가)

  • Kang, Ki-Weon;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.132-137
    • /
    • 2000
  • In this study, model for arrest toughness is proposed in consideration of fracture behavior of composite materials. Also, the probabilistic model is proposed to describe the variability of arrest toughness due to the nonhomogeneity of material. For these models. experiments were conducted on the Carbon/Epoxy composite plates with various thickness using the impact hammer. The elastic work fatter used in J-Integral is applicable to the evaluation of energy release rate. The fracture behavior call be described by crack arrest concept and the arrest toughness is independent of the delamination size. Additionally, a probabilistic characteristics of arrest toughness is well described by the Weibull distribution function. An increasing of thickness raises a variation of arrest toughness.

  • PDF

Generative probabilistic model with Dirichlet prior distribution for similarity analysis of research topic

  • Milyahilu, John;Kim, Jong Nam
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.595-602
    • /
    • 2020
  • We propose a generative probabilistic model with Dirichlet prior distribution for topic modeling and text similarity analysis. It assigns a topic and calculates text correlation between documents within a corpus. It also provides posterior probabilities that are assigned to each topic of a document based on the prior distribution in the corpus. We then present a Gibbs sampling algorithm for inference about the posterior distribution and compute text correlation among 50 abstracts from the papers published by IEEE. We also conduct a supervised learning to set a benchmark that justifies the performance of the LDA (Latent Dirichlet Allocation). The experiments show that the accuracy for topic assignment to a certain document is 76% for LDA. The results for supervised learning show the accuracy of 61%, the precision of 93% and the f1-score of 96%. A discussion for experimental results indicates a thorough justification based on probabilities, distributions, evaluation metrics and correlation coefficients with respect to topic assignment.

Application of FAD on Pressure Tube for the Probabilitic Integrity Assessment (파손평가선도를 이용한 압력관 결함의 확률론적 건전성 평가)

  • Kwak, Sang-Log;Wang, Jong-Bae;Park, Youn-Won;Lee, Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at uninspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of uninspected pressure tube. All the current integrity evaluations procedures are based on conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. More realistic failure criteria, based on FAD are also proposed for the probabilistic analysis. As a result of this study failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.

Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation (몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가)

  • Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

Probabilistic Approach on Railway Infrastructure Stability and Settlement Analysis

  • Lee, Sangho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2013
  • Railway construction needs vast soil investigation for its infrastructure foundation designs along the planned railway path to identify the design parameters for stability and serviceability checks. The soil investigation data are usually classified and grouped to decide design input parameters per each construction section and budget estimates. Deterministic design method which most civil engineer and practitioner are familiar with has a clear limitation in construction/maintenance budget control, and occasionally produced overdesigned or unsafe design problems. Instead of using a batch type analysis with predetermined input parameters, data population collected from site soil investigation and design load condition can be statistically estimated for the mean and variance to present the feature of data distribution and optimized with a best fitting probability function. Probabilistic approach using entire feature of design input data enables to predict the worst, best and most probable cases based on identified ranges of soil and load data, which will help railway designer select construction method to save the time and cost. This paper introduces two Monte Carlo simulations actually applied on estimation of retaining wall external stability and long term settlement of organic soil in soil investigation area for a recent high speed railway project.

Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch

  • Mechab, Belaid;Chama, Mourad;Kaddouri, Khacem;Slimani, Djelloul
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1173-1182
    • /
    • 2016
  • The objective of this work was to evaluate the ductile cracked structures with bonded composite patch used in probabilistic elastic plastic fracture mechanics subjected to tensile load. The finite element method is used to analyze the stress intensity factors for elastic case, the effect of cracks and the thickness of the patch ($e_r$) are presented for calculating the stress intensity factors. For elastic-plastic the Monte Carlo method is used to predict the distribution function of the mechanical response. According to the obtained results, we note that the stress variations are important factors influencing on the distribution function of (J/Je).

Initiating Event Selection and Analysis for Probabilistic Safety Assessment of Korea Research Reactor (국내 연구용원자로 PSA 수행을 위한 초기사건 선정 및 빈도 분석)

  • Lee, Yoon-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.101-110
    • /
    • 2021
  • This paper presents the results of an initiating event analysis as part of a Level 1 probabilistic safety assessment (PSA) for at-power internal events for the Korea Research Reactor (KRR). The PSA methodology is widely used to quantitatively assess the safety of research reactors (RRs) in the domestic nuclear industry. Initiating event frequencies are required to conduct a PSA, and they considerably affect the PSA results. Because there is no domestic database for domestic trip events, the safety of RRs is usually assessed using foreign databases. In this paper, operating experience data from the KRR for trip events were collected and analyzed in order to determine the frequency of specific initiating events. These frequencies were calculated using two approaches according to the event characteristics and data availability: (1) based on KRR operating experience or (2) using generic data.