• 제목/요약/키워드: Privacy-preserving

검색결과 256건 처리시간 0.03초

Semantics-aware Obfuscation for Location Privacy

  • Damiani, Maria Luisa;Silvestri, Claudio;Bertino, Elisa
    • Journal of Computing Science and Engineering
    • /
    • 제2권2호
    • /
    • pp.137-160
    • /
    • 2008
  • The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.

Privacy-Preserving, Energy-Saving Data Aggregation Scheme in Wireless Sensor Networks

  • Zhou, Liming;Shan, Yingzi
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.83-95
    • /
    • 2020
  • Because sensor nodes have limited resources in wireless sensor networks, data aggregation can efficiently reduce communication overhead and extend the network lifetime. Although many existing methods are particularly useful for data aggregation applications, they incur unbalanced communication cost and waste lots of sensors' energy. In this paper, we propose a privacy-preserving, energy-saving data aggregation scheme (EBPP). Our method can efficiently reduce the communication cost and provide privacy preservation to protect useful information. Meanwhile, the balanced energy of the nodes can extend the network lifetime in our scheme. Through many simulation experiments, we use several performance criteria to evaluate the method. According to the simulation and analysis results, this method can more effectively balance energy dissipation and provide privacy preservation compared to the existing schemes.

시계열 데이타 클러스터링에서 푸리에 진폭 기반의 프라이버시 보호 (Privacy-Preserving Clustering on Time-Series Data Using Fourier Magnitudes)

  • 김혜숙;문양세
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권6호
    • /
    • pp.481-494
    • /
    • 2008
  • 본 논문에서는 시계열 데이타 클러스터링에서 DFT 진폭 기반의 프라이버시 보호 기법을 제안한다. 기존의 프라이버시 보호 연구인 DFT 계수 기법은 원본과 유사한 데이타가 복원될 수 있어 프라이버시 보호 측면에서 큰 문제점이 있다. 반면에, 제안한 DFT 진폭 기법은 DFT 변환 후에 위상을 제외한 진폭만을 사용함으로써 원본 데이타를 복원하기 매우 어려운 특징을 가진다. 본 논문에서는 우선 기존의 DFT 계수 기법이 복원이 용이한 함수이고, 제안한 DFT 진폭 기법이 복원이 어려운 함수임을 체계적으로 설명한다. 다음으로, 클러스터링 정확도를 대신하고 진폭을 선택하기 위한 척도로서 거리-순서 보존정도의 개념을 제안한다. 거리-순서 보존 정도는 객체들의 상대적 순서가 클러스터링 보호 함수의 적용전후에 얼마나 보존되는지의 척도를 나타낸다. 본 논문에서는 이러한 거리-순서 보존 정도의 개념을 사용하여 DFT 진폭 기법에서 진폭을 선택하는 탐욕적 전략들을 제시한다. 즉, 제안한 탐욕적 전략은 거리-순서 보존 정도를 극대화하는 방향으로 DFT 진폭을 선택하여, 궁극적으로 클러스터링 정확도를 높이고자 하는 방법이다. 마지막으로 실험을 통해 제안한 거리-순서 보존 정도가 클러스터링 정확도를 대신할 수 있는 척도임을 보인다. 또한, 제안한 DFT 진폭 기법의 탐욕적 전략들이 기존의 DFT 계수 기법에 비해 정확도가 크게 떨어지지 않음을 확인한다. 이 같은 결과를 달 때, 제안한 DFT 진폭 기법은 DFT 계수 기법에 비해 프라이버시 보호 정도를 크게 개선했을 뿐 아니라 비교적 정확한 클러스터링 정확도를 보이는 우수한 연구 결과라 사료된다.

Privacy-Preservation Using Group Signature for Incentive Mechanisms in Mobile Crowd Sensing

  • Kim, Mihui;Park, Younghee;Dighe, Pankaj Balasaheb
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1036-1054
    • /
    • 2019
  • Recently, concomitant with a surge in numbers of Internet of Things (IoT) devices with various sensors, mobile crowdsensing (MCS) has provided a new business model for IoT. For example, a person can share road traffic pictures taken with their smartphone via a cloud computing system and the MCS data can provide benefits to other consumers. In this service model, to encourage people to actively engage in sensing activities and to voluntarily share their sensing data, providing appropriate incentives is very important. However, the sensing data from personal devices can be sensitive to privacy, and thus the privacy issue can suppress data sharing. Therefore, the development of an appropriate privacy protection system is essential for successful MCS. In this study, we address this problem due to the conflicting objectives of privacy preservation and incentive payment. We propose a privacy-preserving mechanism that protects identity and location privacy of sensing users through an on-demand incentive payment and group signatures methods. Subsequently, we apply the proposed mechanism to one example of MCS-an intelligent parking system-and demonstrate the feasibility and efficiency of our mechanism through emulation.

A Privacy-preserving and Energy-efficient Offloading Algorithm based on Lyapunov Optimization

  • Chen, Lu;Tang, Hongbo;Zhao, Yu;You, Wei;Wang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2490-2506
    • /
    • 2022
  • In Mobile Edge Computing (MEC), attackers can speculate and mine sensitive user information by eavesdropping wireless channel status and offloading usage pattern, leading to user privacy leakage. To solve this problem, this paper proposes a Privacy-preserving and Energy-efficient Offloading Algorithm (PEOA) based on Lyapunov optimization. In this method, a continuous Markov process offloading model with a buffer queue strategy is built first. Then the amount of privacy of offloading usage pattern in wireless channel is defined. Finally, by introducing the Lyapunov optimization, the problem of minimum average energy consumption in continuous state transition process with privacy constraints in the infinite time domain is transformed into the minimum value problem of each timeslot, which reduces the complexity of algorithms and helps obtain the optimal solution while maintaining low energy consumption. The experimental results show that, compared with other methods, PEOA can maintain the amount of privacy accumulation in the system near zero, while sustaining low average energy consumption costs. This makes it difficult for attackers to infer sensitive user information through offloading usage patterns, thus effectively protecting user privacy and safety.

IoT환경에서 프라이버시를 보장하는 의료데이터 이상치 탐색 기법 (Privacy-Preserving Outlier Detection in Healthcare Services)

  • 이보영;최원석;이동훈
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1187-1199
    • /
    • 2015
  • 최근 다양한 기능을 가진 센서가 개발됨에 따라 여러 종류의 데이터를 간편하게 측정할 수 있게 되었다. 특히, 센서들이 인터넷에 연결되는 사물인터넷(Internet of Things: IoT)환경과 헬스 케어 서비스가 결합하면서 원격에서 심박수, 혈중 산소 농도, 체온, 혈압 등의 사용자 데이터를 수집하는 어플리케이션이 등장하고 있다. 사용자의 유전 정보를 이용하여 이상형을 찾거나 환자의 질병유무를 알려주는 어플리케이션 등이 대표적이 예이다. 이 때에 수집되는 사용자 데이터는 사용자의 프라이버시와 매우 밀접하기 때문에 이러한 정보는 반드시 보호되어야 한다. 즉, 사용자의 프라이버시를 보장하면서 서비스제공자는 적절한 서비스를 제공하여야 한다. 본 논문에서는 PhysioNet에서 제공하는 생체정보를 활용하여 헬스 케어 서비스를 제공하는 환경에서 프라이버시를 보장하며 서비스 제공자가 서비스를 제공할 수 있는 있는 기법을 제안한다.

Traceable Dynamic Public Auditing with Identity Privacy Preserving for Cloud Storage

  • Zhang, Yinghui;Zhang, Tiantian;Guo, Rui;Xu, Shengmin;Zheng, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5653-5672
    • /
    • 2019
  • In cloud computing era, an increasing number of resource-constrained users outsource their data to cloud servers. Due to the untrustworthiness of cloud servers, it is important to ensure the integrity of outsourced data. However, most of existing solutions still have challenging issues needing to be addressed, such as the identity privacy protection of users, the traceability of users, the supporting of dynamic user operations, and the publicity of auditing. In order to tackle these issues simultaneously, in this paper, we propose a traceable dynamic public auditing scheme with identity privacy preserving for cloud storage. In the proposed scheme, a single user, including a group manager, is unable to know the signer's identity. Furthermore, our scheme realizes traceability based on a secret sharing mechanism and supports dynamic user operations. Based on the security and efficiency analysis, it is shown that our scheme is secure and efficient.

선형계를 위한 실용적인 프라이버시 보존형 다자간 계산 프로토콜 (A Practical Privacy-Preserving Multi-Party Computation Protocol for Solving Linear Systems)

  • 이옥연;홍도원;강주성
    • 정보보호학회논문지
    • /
    • 제16권2호
    • /
    • pp.13-24
    • /
    • 2006
  • 여러 개체가 각자의 정보를 제공하여 이를 바탕으로 정보 제공자의 프라이버시를 보존하면서 공통의 유익한 정보를 얻고자 하는 다자간 협력 계산 프로토콜에 대해서 논한다. 금융, 제조업, 통신 분야 등에서 널리 응용되는 선형계(linear system)의 일반해(general solution)와 최소제곱해(least-square solution)를 구하는 문제에서 프라이버시를 보존하는 실용적인 다자간(multi-party) 협력 계산 프로토콜을 제안한다. 본 논문에 제안된 프로토콜은 기존의 양자간(two-party) 협력 계산 방식을 확장한 새로운 것으로 효율성 측면에서 우수한 실용적인 다자간 계산 프로토콜이다.

IPC-CNN: A Robust Solution for Precise Brain Tumor Segmentation Using Improved Privacy-Preserving Collaborative Convolutional Neural Network

  • Abdul Raheem;Zhen Yang;Haiyang Yu;Muhammad Yaqub;Fahad Sabah;Shahzad Ahmed;Malik Abdul Manan;Imran Shabir Chuhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2589-2604
    • /
    • 2024
  • Brain tumors, characterized by uncontrollable cellular growths, are a significant global health challenge. Navigating the complexities of tumor identification due to their varied dimensions and positions, our research introduces enhanced methods for precise detection. Utilizing advanced learning techniques, we've improved early identification by preprocessing clinical dataset-derived images, augmenting them via a Generative Adversarial Network, and applying an Improved Privacy-Preserving Collaborative Convolutional Neural Network (IPC-CNN) for segmentation. Recognizing the critical importance of data security in today's digital era, our framework emphasizes the preservation of patient privacy. We evaluated the performance of our proposed model on the Figshare and BRATS 2018 datasets. By facilitating a collaborative model training environment across multiple healthcare institutions, we harness the power of distributed computing to securely aggregate model updates, ensuring individual data protection while leveraging collective expertise. Our IPC-CNN model achieved an accuracy of 99.40%, marking a notable advancement in brain tumor classification and offering invaluable insights for both the medical imaging and machine learning communities.

Privacy-Preserving Aggregation of IoT Data with Distributed Differential Privacy

  • Lim, Jong-Hyun;Kim, Jong-Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.65-72
    • /
    • 2020
  • 오늘날 사물 인터넷은 우리에게 편의를 제공하기 위해 가정, 산업 현장 및 병원을 포함한 많은 장소에서 사용된다. 다양한 장치가 네트워크에 연결됨에 따라 많은 서비스들이 실시간 데이터 수집, 저장 및 분석을 통해 새로운 가치를 창출하고 있다. 이처럼 많은 분야에서 IoT 장치 내의 센서 및 통신 기능을 활용하는 서비스 및 애플리케이션을 개발하고 있다. 예시로 산업 분야에서 Samsung과 LG는 자사의 IoT 애플리케이션을 통해 가전과 IoT 기기를 연결하여 스마트 홈을 구축하는 서비스를 제공하며, 의료 및 건강 분야에서 Samsung과 Xioami와 같은 기업들은 피트니스 워치 및 앱을 통해 심전도를 확인하거나 운동량을 기록, 관리한다. 위 같은 사례에서 스마트 홈을 구축하는 서비스의 경우에 수집한 데이터를 통해 해당 가정의 생활 패턴이나 출퇴근 여부 등의 민감정보를 유출할 수 있다. 또한 의료 데이터로 사용하기 위해 측정한 데이터를 통해 개인 정보와 질병의 존재와 같은 민감정보를 유출할 수 있다. 따라서 이를 보호하기 위해 해당 논문이 제안하는 방법에 따라 데이터를 수집, 배포한다면 데이터를 제공하는 사용자의 개인 정보 보호에 위협을 막을 수 있다. 이를 해결하기 위해 최근에는 프라이버시 보호 데이터 처리에 차분 프라이버시(DP)가 채택되어왔다. 따라서 DP를 기반으로 스마트워치 플랫폼에서 건강 데이터를 안전하게 수집할 수 있는 방법을 제안하며, 이를 통해 위와 같이 다양한 분야에서 프라이버시를 보호하는 환경에서의 데이터 수집 및 배포를 가능케 할 수 있다.