Damiani, Maria Luisa;Silvestri, Claudio;Bertino, Elisa
Journal of Computing Science and Engineering
/
제2권2호
/
pp.137-160
/
2008
The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.
Because sensor nodes have limited resources in wireless sensor networks, data aggregation can efficiently reduce communication overhead and extend the network lifetime. Although many existing methods are particularly useful for data aggregation applications, they incur unbalanced communication cost and waste lots of sensors' energy. In this paper, we propose a privacy-preserving, energy-saving data aggregation scheme (EBPP). Our method can efficiently reduce the communication cost and provide privacy preservation to protect useful information. Meanwhile, the balanced energy of the nodes can extend the network lifetime in our scheme. Through many simulation experiments, we use several performance criteria to evaluate the method. According to the simulation and analysis results, this method can more effectively balance energy dissipation and provide privacy preservation compared to the existing schemes.
본 논문에서는 시계열 데이타 클러스터링에서 DFT 진폭 기반의 프라이버시 보호 기법을 제안한다. 기존의 프라이버시 보호 연구인 DFT 계수 기법은 원본과 유사한 데이타가 복원될 수 있어 프라이버시 보호 측면에서 큰 문제점이 있다. 반면에, 제안한 DFT 진폭 기법은 DFT 변환 후에 위상을 제외한 진폭만을 사용함으로써 원본 데이타를 복원하기 매우 어려운 특징을 가진다. 본 논문에서는 우선 기존의 DFT 계수 기법이 복원이 용이한 함수이고, 제안한 DFT 진폭 기법이 복원이 어려운 함수임을 체계적으로 설명한다. 다음으로, 클러스터링 정확도를 대신하고 진폭을 선택하기 위한 척도로서 거리-순서 보존정도의 개념을 제안한다. 거리-순서 보존 정도는 객체들의 상대적 순서가 클러스터링 보호 함수의 적용전후에 얼마나 보존되는지의 척도를 나타낸다. 본 논문에서는 이러한 거리-순서 보존 정도의 개념을 사용하여 DFT 진폭 기법에서 진폭을 선택하는 탐욕적 전략들을 제시한다. 즉, 제안한 탐욕적 전략은 거리-순서 보존 정도를 극대화하는 방향으로 DFT 진폭을 선택하여, 궁극적으로 클러스터링 정확도를 높이고자 하는 방법이다. 마지막으로 실험을 통해 제안한 거리-순서 보존 정도가 클러스터링 정확도를 대신할 수 있는 척도임을 보인다. 또한, 제안한 DFT 진폭 기법의 탐욕적 전략들이 기존의 DFT 계수 기법에 비해 정확도가 크게 떨어지지 않음을 확인한다. 이 같은 결과를 달 때, 제안한 DFT 진폭 기법은 DFT 계수 기법에 비해 프라이버시 보호 정도를 크게 개선했을 뿐 아니라 비교적 정확한 클러스터링 정확도를 보이는 우수한 연구 결과라 사료된다.
Recently, concomitant with a surge in numbers of Internet of Things (IoT) devices with various sensors, mobile crowdsensing (MCS) has provided a new business model for IoT. For example, a person can share road traffic pictures taken with their smartphone via a cloud computing system and the MCS data can provide benefits to other consumers. In this service model, to encourage people to actively engage in sensing activities and to voluntarily share their sensing data, providing appropriate incentives is very important. However, the sensing data from personal devices can be sensitive to privacy, and thus the privacy issue can suppress data sharing. Therefore, the development of an appropriate privacy protection system is essential for successful MCS. In this study, we address this problem due to the conflicting objectives of privacy preservation and incentive payment. We propose a privacy-preserving mechanism that protects identity and location privacy of sensing users through an on-demand incentive payment and group signatures methods. Subsequently, we apply the proposed mechanism to one example of MCS-an intelligent parking system-and demonstrate the feasibility and efficiency of our mechanism through emulation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권8호
/
pp.2490-2506
/
2022
In Mobile Edge Computing (MEC), attackers can speculate and mine sensitive user information by eavesdropping wireless channel status and offloading usage pattern, leading to user privacy leakage. To solve this problem, this paper proposes a Privacy-preserving and Energy-efficient Offloading Algorithm (PEOA) based on Lyapunov optimization. In this method, a continuous Markov process offloading model with a buffer queue strategy is built first. Then the amount of privacy of offloading usage pattern in wireless channel is defined. Finally, by introducing the Lyapunov optimization, the problem of minimum average energy consumption in continuous state transition process with privacy constraints in the infinite time domain is transformed into the minimum value problem of each timeslot, which reduces the complexity of algorithms and helps obtain the optimal solution while maintaining low energy consumption. The experimental results show that, compared with other methods, PEOA can maintain the amount of privacy accumulation in the system near zero, while sustaining low average energy consumption costs. This makes it difficult for attackers to infer sensitive user information through offloading usage patterns, thus effectively protecting user privacy and safety.
최근 다양한 기능을 가진 센서가 개발됨에 따라 여러 종류의 데이터를 간편하게 측정할 수 있게 되었다. 특히, 센서들이 인터넷에 연결되는 사물인터넷(Internet of Things: IoT)환경과 헬스 케어 서비스가 결합하면서 원격에서 심박수, 혈중 산소 농도, 체온, 혈압 등의 사용자 데이터를 수집하는 어플리케이션이 등장하고 있다. 사용자의 유전 정보를 이용하여 이상형을 찾거나 환자의 질병유무를 알려주는 어플리케이션 등이 대표적이 예이다. 이 때에 수집되는 사용자 데이터는 사용자의 프라이버시와 매우 밀접하기 때문에 이러한 정보는 반드시 보호되어야 한다. 즉, 사용자의 프라이버시를 보장하면서 서비스제공자는 적절한 서비스를 제공하여야 한다. 본 논문에서는 PhysioNet에서 제공하는 생체정보를 활용하여 헬스 케어 서비스를 제공하는 환경에서 프라이버시를 보장하며 서비스 제공자가 서비스를 제공할 수 있는 있는 기법을 제안한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5653-5672
/
2019
In cloud computing era, an increasing number of resource-constrained users outsource their data to cloud servers. Due to the untrustworthiness of cloud servers, it is important to ensure the integrity of outsourced data. However, most of existing solutions still have challenging issues needing to be addressed, such as the identity privacy protection of users, the traceability of users, the supporting of dynamic user operations, and the publicity of auditing. In order to tackle these issues simultaneously, in this paper, we propose a traceable dynamic public auditing scheme with identity privacy preserving for cloud storage. In the proposed scheme, a single user, including a group manager, is unable to know the signer's identity. Furthermore, our scheme realizes traceability based on a secret sharing mechanism and supports dynamic user operations. Based on the security and efficiency analysis, it is shown that our scheme is secure and efficient.
여러 개체가 각자의 정보를 제공하여 이를 바탕으로 정보 제공자의 프라이버시를 보존하면서 공통의 유익한 정보를 얻고자 하는 다자간 협력 계산 프로토콜에 대해서 논한다. 금융, 제조업, 통신 분야 등에서 널리 응용되는 선형계(linear system)의 일반해(general solution)와 최소제곱해(least-square solution)를 구하는 문제에서 프라이버시를 보존하는 실용적인 다자간(multi-party) 협력 계산 프로토콜을 제안한다. 본 논문에 제안된 프로토콜은 기존의 양자간(two-party) 협력 계산 방식을 확장한 새로운 것으로 효율성 측면에서 우수한 실용적인 다자간 계산 프로토콜이다.
Abdul Raheem;Zhen Yang;Haiyang Yu;Muhammad Yaqub;Fahad Sabah;Shahzad Ahmed;Malik Abdul Manan;Imran Shabir Chuhan
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권9호
/
pp.2589-2604
/
2024
Brain tumors, characterized by uncontrollable cellular growths, are a significant global health challenge. Navigating the complexities of tumor identification due to their varied dimensions and positions, our research introduces enhanced methods for precise detection. Utilizing advanced learning techniques, we've improved early identification by preprocessing clinical dataset-derived images, augmenting them via a Generative Adversarial Network, and applying an Improved Privacy-Preserving Collaborative Convolutional Neural Network (IPC-CNN) for segmentation. Recognizing the critical importance of data security in today's digital era, our framework emphasizes the preservation of patient privacy. We evaluated the performance of our proposed model on the Figshare and BRATS 2018 datasets. By facilitating a collaborative model training environment across multiple healthcare institutions, we harness the power of distributed computing to securely aggregate model updates, ensuring individual data protection while leveraging collective expertise. Our IPC-CNN model achieved an accuracy of 99.40%, marking a notable advancement in brain tumor classification and offering invaluable insights for both the medical imaging and machine learning communities.
오늘날 사물 인터넷은 우리에게 편의를 제공하기 위해 가정, 산업 현장 및 병원을 포함한 많은 장소에서 사용된다. 다양한 장치가 네트워크에 연결됨에 따라 많은 서비스들이 실시간 데이터 수집, 저장 및 분석을 통해 새로운 가치를 창출하고 있다. 이처럼 많은 분야에서 IoT 장치 내의 센서 및 통신 기능을 활용하는 서비스 및 애플리케이션을 개발하고 있다. 예시로 산업 분야에서 Samsung과 LG는 자사의 IoT 애플리케이션을 통해 가전과 IoT 기기를 연결하여 스마트 홈을 구축하는 서비스를 제공하며, 의료 및 건강 분야에서 Samsung과 Xioami와 같은 기업들은 피트니스 워치 및 앱을 통해 심전도를 확인하거나 운동량을 기록, 관리한다. 위 같은 사례에서 스마트 홈을 구축하는 서비스의 경우에 수집한 데이터를 통해 해당 가정의 생활 패턴이나 출퇴근 여부 등의 민감정보를 유출할 수 있다. 또한 의료 데이터로 사용하기 위해 측정한 데이터를 통해 개인 정보와 질병의 존재와 같은 민감정보를 유출할 수 있다. 따라서 이를 보호하기 위해 해당 논문이 제안하는 방법에 따라 데이터를 수집, 배포한다면 데이터를 제공하는 사용자의 개인 정보 보호에 위협을 막을 수 있다. 이를 해결하기 위해 최근에는 프라이버시 보호 데이터 처리에 차분 프라이버시(DP)가 채택되어왔다. 따라서 DP를 기반으로 스마트워치 플랫폼에서 건강 데이터를 안전하게 수집할 수 있는 방법을 제안하며, 이를 통해 위와 같이 다양한 분야에서 프라이버시를 보호하는 환경에서의 데이터 수집 및 배포를 가능케 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.