최근 딥러닝이 다양한 분야에서 활용됨에 따라 중앙 집중식 서버, 적대적 공격 그리고 데이터 부족 및 독점화와 같은 다양한 문제점이 발생하고 있다. 또한 연합학습을 수행할 경우, 클라이언트가 잘못된 기울기를 서버에 제공하거나 서버가 악의적인 행동을 할 경우 심각한 문제로 이어질 수 있다. 이와 같은 보안 취약점을 해결하기 위해 딥러닝에 블록체인을 결합하여 중앙 집중식 서버를 분산화하고 각 참여자 노드에게 인센티브를 줌으로써 신뢰할 수 있는 데이터를 수집하는 기법이 연구되고 있다. 본 논문에서는 위와 같이 딥러닝의 문제점을 해결하기 위해 블록체인이 어떻게 적용되었는지 살펴본다.
SMC로 불리는 안전한 다자간 계산 프로토콜은 이론적으로 완벽한 프라이버시 보호 기능 및 데이터 정확성을 가지고 있지만 현재의 컴퓨팅 환경에서는 구현이 불가능할 정도로 비효율적이다. 매우 효율적이어서 실용화 되어 있는 랜덤화 기법은 상대적으로 낮은 수준의 프라이버시 보호 기능을 지니고 있다. 최근 SMC와 랜덤화 기법을 적절히 혼합한 형태의 프라이버시 보호 기술이 Teng-Du(2007)에 의해서 제안되었다. 본 논문에서 우리는 Teng-Du의 기법을 면밀히 분석하여 새롭게 구현한 연구 결과를 제시한다. SMC 기술로는 Vaidya-Clifton의 스칼라곱 프로토콜을 채택하고, Agrawal-Jayant-Haritsa가 제안한 랜덤대치 기법을 랜덤화 기술로 선택하여 복합적으로 사용한 프라이버시 보호 기법을 제안한다.
정보기술의 발달로 정보를 수집, 관리, 공유하기가 용이해 짐에 따라 여러 조직이나 기관에서는 개인정보를 수집해 관리하고 있다. 수집한 개인정보를 통계나 연구 등을 목적으로 배포할 때 개인의 프라이버시를 보호하기 위해 k-anonymity 와 l-diversity 원리가 제안되었고 이를 기반으로 하는 프라이버시 보호 기법들이 제안되었다. 그러나 기존 방법들은 정적인 데이터를 단 한번 배포하는 것을 가정하기 때문에 지속적으로 데이터에 삽입이나 삭제가 발생하는 동적 데이터 환경에 그대로 적용하기 적합하지 않다. 본 논문에서는 동적 데이터 환경에서 l-diversity 을 유지하면서 데이터 삽입과 삭제를 효율적으로 처리할 수 있는 기법을 제안한다. 제안 기법은 일반화를 사용하지 않기 때문에 일반화에서 발생하는 정보의 손실이 발생하지 않고 삽입과 삭제의 처리가 간단한 것이 특징이다.
현대 사회에서 인공지능은 다양한 분야에서 사용되며 발전하고 있다. 특히 의료, 공업, 경제, 농업, 정치 등에 영향을 미치며, 데이터 프라이버시 문제가 빈번히 발생한다. 이를 해결하기 위해 연합학습이 제안되었는데, 이는 로컬 디바이스에서 학습한 모델만을 중앙 서버로 전송하여 프라이버시를 보장하고 효율성을 높인다. 하지만 연합학습은 중앙 서버를 필요로 하므로 탈중앙적인 환경에서는 사용할 수 없는 단점이 있다. 이를 보완하기 위해 본 논문에서는 서버가 없는 다양한 환경에서 연합학습을 적용할 수 있는 비-완전 연결 분산형 연합학습 알고리즘을 소개한다. 비-완전 연결 분산형 연합학습 알고리즘은 모든 노드가 서로 연결 되어있는 상태가 아닌 특정 노드와만 연결 되어있는 형태로 대부분의 실전 분산형 환경에서 사용할 수 있다. 본 방식의 학습 정확도는 일반적인 머신러닝의 정확도와 비교하여 준수한 성능을 보여주고 있다.
클라우드 컴퓨팅 서비스를 사용하기 위해 사용자가 데이터를 클라우드로 전송하는 과정에서 프라이버시 문제가 발생할 수 있다. 이를 해결하기 위해 동형암호를 적용한 프라이버시 보호 원격 컴퓨팅 기술이 연구되고 있다. 하지만 동형암호 연산은 큰 성능 부하가 발생하며, 본 논문은 특정 연산에 대하여 배타적 프라이버시 보호기술을 적용한 효율적인 동형암호 연산 기술을 제안한다.
최근 인공지능 기술의 발전과 함께 기계학습과 빅데이터를 융합한 서비스가 증가하게 되었고, 무분별한 데이터 수집과 학습으로 인한 개인정보 유출 위험도가 커졌다. 따라서 프라이버시를 보호하면서 기계학습을 수행할 수 있는 기술이 중요해졌다. 동형암호 기술은 정보 주체자의 개인정보 기밀성을 유지하면서 기계학습을 할 수 있는 방법 중 하나이다. 그러나 평문 크기에 비례하여 암호문 크기와 연산 결과의 노이즈가 커지는 동형암호의 특징으로 인해 기계학습 모델의 예측 정확도가 감소하고 학습 시간이 오래 소요되는 문제가 발생한다. 본 논문에서는 부분 동형암호화된 데이터셋으로 로지스틱 회귀 모델을 학습할 수 있는 기법을 제안한다. 실험 결과에 따르면 제안하는 기법이 종래 기법보다 예측 정확도를 59.4% 향상시킬 수 있었고, 학습 소요 시간을 63.6% 개선할 수 있었다.
최근 드론 산업의 성장으로 드론 등록이 증가함에 따라 드론을 효율적으로 관리하기 위해 Remote ID를 도입하였다. 그러나 현재의 방법은 드론의 개인 정보 보호를 고려하지 않고 있어 드론의 개인 정보 노출과 보안 문제를 초래할 수 있다. 본 논문에서는 하드웨어의 고유 특성을 PUF 를 활용하여 드론의 익명성을 보호하고, 신뢰할 수 있는 대상이 드론을 안전하게 식별할 수 있도록 하는 새로운 프로토콜을 제안한다.
현대 사회에서 큰 문제중 하나인 보이스 피싱은 다양한 기술을 사용하여 많은 사람에게 피해를 주고 있다. 이러한 문제를 해결하고자 많은 시도가 있었고 그 중 한 방법이 인공지능을 활용하여 보이스 피싱을 탐지하는 방법이다. 하지만 인공지능을 활용하는 과정에서 데이터 프라이버시 보장이 이루어지지 않는 문제가 발생한다. 본 논문에서는 이러한 문제를 해결하고자 연합학습을 사용한 개인정보 보호에 특화된 보이스 피싱 탐지 기술을 제안한다. 연합학습은 사용자의 데이터를 중앙 서버로 전송하지 않고 로컬 디바이스에서 학습한 모델만을 서버로 전송하여 개인정보 유출을 방지하는 인공지능 학습 방법이다. 또한 스노클을 활용한 오토 데이터 라벨링 기법을 적용하여 피싱 여부를 자동으로 분류하고 탐지 성능을 향상시킨다. 본 기술은 일반적인 인공지능 학습 기술과 비교하여 좋은 성능을 보이며 특히 피싱 탐지에서 중요한 부분인 긍정 클래스 예측 부분에서 높은 성능을 보이고 있다.
차량애드혹네트워크(VANET: Vehicular Ad-hoc Network)는 차량 간 통신을 통하여 운전자의 안전을 향상시키는 응용으로 많은 관심을 받고 있다. 이러한 VANET의 활성화를 위해서는 프라이버시가 보장되는 상호 인증이 보장되어야 한다. 기존 연구에서는 그룹 기반 인증 프로토콜들이 제안되었다. 그러나 키 그룹의 반복사용으로 인한 ID노출과 RSU(Road side Unit)의 DoS의 공격 위험에 대한 문제가 고려되지 않았다. 본 논문에서는 강한 익명성이 지원되는 인증 프로토콜을 위한 확률론적 접근방식을 제안한다. VANET 환경에서 제안된 구조를 몇 가지의 조건 하에서 성능을 평가하여 제안한 구조가 프라이버시를 향상시키는데 더 효율적인 방식임을 밝힌다.
최근 클라우드 스토리지 사용이 급증함에 따라 스토리지의 효율적인 사용을 위한 데이터 중복제거 기술이 활용되고 있다. 그러나 외부 스토리지에 민감한 데이터를 저장할 경우 평문상태의 데이터는 기밀성 문제가 발생하기 때문에 중복처리를 통한 스토리지 효율성 제공뿐만 아니라 데이터 암호화를 통한 기밀성 보장이 필요하다. 최근, 스토리지의 절약뿐만 아니라 네트워크 대역폭의 효율적인 사용을 위해 클라이언트측 중복제거 기술이 주목을 받으면서 다양한 클라이언트측 중복제거 기술들이 제안되었지만 아직까지 안전성에 대한 문제가 남아있다. 본 논문에서는 암호화를 통해 데이터의 기밀성을 보장하고 소유권 증명을 이용해 데이터 접근제어를 제공하여 신뢰할 수 없는 서버와 악의적인 사용자로부터 프라이버시를 보존할 수 있는 안전한 클라이언트측 소스기반 중복제거 기술을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.