Acknowledgement
본 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C4001270). 또한, 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행되었음(IITP-2024-RS-2020-0-01602).
References
- McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 20-22 Apr, 2017.
- Gangavarapu, Tushaar, C. D. Jaidhar, and Bhabesh Chanduka. "Applicability of machine learning in spam and phishing email filtering: review and approaches." Artificial Intelligence Review 53.7 (2020): 5019-5081.
- Basnet, Ram B., and Tenzin Doleck. "Towards developing a tool to detect phishing URLs: A machine learning approach." 2015 IEEE International Conference on Computational Intelligence & Communication Technology. IEEE, 2015.
- Lee, Minyoung, and Eunil Park. "Real-time Korean voice phishing detection based on machine learning approaches." Journal of Ambient Intelligence and Humanized Computing 14.7 (2023):8173-8184.
- Programmatically Build Training Data. n,d. Snorkel. https://www.snorkel.org/
- Milandu K. M. B. and D.J. Park, ''AReal-time Efficient Detection Technique of Voice Phishing with AI," Proceedings of the Korean Information Science Society Conference, pp. 768-770, 2021.
- Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2 (2020): 429-450.