KSII Transactions on Internet and Information Systems (TIIS)
/
제16권3호
/
pp.1028-1046
/
2022
Genome-wide association studies (GWAS) aim to find the significant genetic variants for common complex disease. However, genotype data has privacy information such as disease status and identity, which make data sharing and research difficult. Differential privacy is widely used in the privacy protection of data sharing. The current differential privacy approach in GWAS pays no attention to raw data but to statistical data, and doesn't achieve equilibrium between utility and privacy, so that data sharing is hindered and it hampers the development of genomics. To share data more securely, we propose a differential privacy preserving approach of data sharing for GWAS, and achieve the equilibrium between privacy and data utility. Firstly, a reasonable disturbance interval for the genotype is calculated based on the expected utility. Secondly, based on the interval, we get the Nash equilibrium point between utility and privacy. Finally, based on the equilibrium point, the original genotype matrix is perturbed with differential privacy, and the corresponding random genotype matrix is obtained. We theoretically and experimentally show that the method satisfies expected privacy protection and utility. This method provides engineering guidance for protecting GWAS data privacy.
이 연구는 마이데이터 이용자의 프라이버시 태도와 보호의도에 대한 프라이버시 냉소주의 4개 차원(불신, 불확실성, 무기력, 체념)의 영향 관계를 분석했다. 연구결과, 마이데이터 이용자의 인터넷 활용능력은 프라이버시 냉소주의 차원 중 '체념'에 통계적으로 유의미하게 부정적인 영향을 미치는 것으로 나타났다. 둘째, 프라이버시 위험은 프라이버시 냉소주의 차원 중 마이데이터 사업자에 대한 '불신', 프라이버시 통제에 대한 '불확실성' 및 '무기력'에 긍정적 영향을 준다. 셋째, 프라이버시 염려는 프라이버시 냉소주의 차원인 '불신', '불확실성'에 통계적으로 유의미한 긍정적 영향, '체념'은 부정적인 영향을 미치는 것으로 분석됐다. 넷째, 프라이버시 냉소주의 차원의 '체념'은 프라이버시 보호의도에 부정적인 영향을 미치는 것으로 나타났다. 종합하면, 마이데이터 이용자의 인터넷 활용능력은 프라이버시 냉소주의를 완화할 수 있는 변인이나, 프라이버시 위험과 프라이버시 염려는 프라이버시 냉소주의를 강화하는 변인으로 나타났다. 프라이버시 냉소주의 중 '체념'은 프라이버시 염려를 상쇄시키고, 프라이버시 보호의도를 낮춘다. 이는 프라이버시 노출에 대한 위험 또는 염려의 상황에서 프라이버시 냉소주의가 이러한 상황을 벗어나게 하는 인지적 메커니즘으로 기능한다는 기존 연구 결과들을 뒷받침한다.
International Journal of Internet, Broadcasting and Communication
/
제12권1호
/
pp.137-143
/
2020
With the development of information and communication technology, various data have appeared and are being distributed. The use of various data has contributed to the enrichment and convenience of our lives. Data in the public areas is also growing in volume and being actively used. Public data in the field of education are also used in various ways. As the distribution and use of public data has increased, advantages and disadvantages have started to emerge. Among the various disadvantages, the privacy problem is a representative one. In this study, we deal with the privacy issues of public data in education. First, we introduce the privacy issues of public data in the education field and suggest various solutions. The various solutions include the expansion of privacy education opportunities, the need for a new privacy protection model, the provision of a training opportunity for privacy protection for teachers and administrators, and the development of a real-time privacy infringement diagnosis tool.
차분 프라이버시는 데이터 프라이버시를 보존함과 동시에 데이터를 수집 및 분석할 수 있는 기법으로써 프라이버시 보존형 데이터 활용 분야에서 널리 적용되고 있다. 이러한 차분 프라이버시의 지역적 모델인 로컬 차분 프라이버시 알고리즘은 무작위 응답을 기반으로 데이터 소유자가 직접 데이터를 가공 처리하여 공개한다. 따라서 개인은 데이터 프라이버시를 보장받을 수 있으며, 데이터 분석가는 수집된 다수의 데이터를 통해 유용한 통계적 결과값을 도출할 수 있다. 이러한 로컬 차분 프라이버시 기법은 세계적 기업인 Google, Apple, Microsoft에서 실질적으로 사용자의 데이터를 수집 및 분석할 때 활용되고 있다. 본 논문에서는 현실에 실질적으로 활용되고 있는 로컬 차분 프라이버시 기법에 대해 비교분석한다. 또한, 실제 적용 사례 연구로써 개인의 프라이버시가 결과의 신뢰성에 큰 영향을 미치는 설문 및 여론조사 시나리오를 기반으로 로컬 차분 프라이버시 기법을 적용하여 현실에서의 활용 가능성에 대해 연구한다.
Today, with the development of the internet of things, wearable devices related to personal health care have become widespread. Various global information and communication technology companies are developing various wearable health devices, which can collect personal health information such as heart rate, steps, and calories, using sensors built into the device. However, since individual health data includes sensitive information, the collection of irrelevant health data can lead to personal privacy issue. Therefore, there is a growing need to develop technology for collecting sensitive health data from wearable health devices, while preserving privacy. In recent years, local differential privacy (LDP), which enables sensitive data collection while preserving privacy, has attracted much attention. In this paper, we develop a technology for collecting vast amount of health data from a smartwatch device, which is one of popular wearable health devices, using local difference privacy. Experiment results with real data show that the proposed method is able to effectively collect sensitive health data from smartwatch users, while preserving privacy.
최근 프라이버시 적용이 IT분야의 가장 중요한 문제의 하나로 대두되고 있다. 프라이버시 보호는 조직의 데이터 처리 시스템에 프라이버시 정책을 적용함으로써 달성 될 수 있다. 전통적인 보안 모델은 다소간 프라이버시 바인딩과 같은 기본적인 프라이버시 요구를 적용하기에 부적절하다. 본 논문은 조직에 프라이버시 정책을 적용할 수 있는 하나의 확장된 역할기반 접근제어 모델을 제안한다. 이 모델은 RBAC과 도메인-타입 적용, 그리고 프라이버시 정책을 결합함으로써 프라이버시 보호와 함께 문맥기반 접근제어를 제공한다. 프라이버시 정책은 역할에 프라이버시 등급을, 데이터에 고객의 프라이버시 선호에 따른 데이터 프라이버시 등급을 부여하는 데이터 사용 정책을 적용함으로써 달성한다. 또 이 모델을 응용에 적용하기 위하여 작은 병원 모델이 사용되었다.
This study compares and analyzes the legal systems of Korea, the European Union, China, and the United States based on the disclosure principles and processing policies for personal data processing and provides references for seeking improvements in our legal system. Furthermore, this research aims to suggest institutional implications to overcome data transfer limitations in the upcoming digital economy. Findings on a comparative analysis of the relevant legal systems for disclosing privacy policies in four countries showed that Korea's privacy policy is under the eight principles of privacy proposed by the OECD. However, there are limitations in the current situation where personal information is increasingly transferred overseas due to direct international trade e-commerce. On the other hand, the European Union enacted the General Data Protection Regulation (GDPR) in 2016 and emphasized the transfer of personal information under the Privacy Policy. China also showed differences in the inclusion of required items in its privacy policy based on its values and principles regarding transferring personal information and handling sensitive information. The U.S. CPRA amended §1798.135 of the CCPA to add a section on the processing of sensitive information, requiring companies to disclose how they limit the use of sensitive information and limit the use of such data, thereby strengthening the protection of data providers' rights to sensitive information. Thus, we should review our privacy policies to specify detailed standards for the privacy policy items required by data providers in the era of digital economy and digital commerce. In addition, privacy-related organizations and stakeholders should analyze the legal systems and items related to the principles of personal data disclosure and privacy policies in major countries so that personal data providers can be more conveniently and accurately informed about processing their personal information.
The release of relational data containing personal sensitive information poses a significant risk of privacy breaches. To preserve privacy while publishing such data, it is important to implement techniques that ensure protection of sensitive information. One popular technique used for this purpose is data perturbation, which is popularly used for privacy-preserving data release due to its simplicity and efficiency. However, the data perturbation has some limitations that prevent its practical application. As such, it is necessary to propose alternative solutions to overcome these limitations. In this study, we propose a novel approach to preserve privacy in the release of relational data containing personal sensitive information. This approach addresses an intuitive, syntactic privacy criterion for data perturbation and two perturbation methods for relational data release. Through experiments with synthetic and real data, we evaluate the performance of our methods.
Kundeti Naga Prasanthi;M V P Chandra Sekhara Rao;Ch Sudha Sree;P Seshu Babu
International Journal of Computer Science & Network Security
/
제23권6호
/
pp.99-106
/
2023
Now a days, large volumes of data is accumulating in every field due to increase in capacity of storage devices. These large volumes of data can be applied with data mining for finding useful patterns which can be used for business growth, improving services, improving health conditions etc. Data from different sources can be combined before applying data mining. The data thus gathered can be misused for identity theft, fake credit/debit card transactions, etc. To overcome this, data mining techniques which provide privacy are required. There are several privacy preserving data mining techniques available in literature like randomization, perturbation, anonymization etc. This paper proposes an Enhanced Hybrid Privacy Preserving Data Mining(EHPPDM) technique. The proposed technique provides more privacy of data than existing techniques while providing better classification accuracy. The experimental results show that classification accuracies have increased using EHPPDM technique.
Generally, big data contains sensitive information about individuals, and thus directly releasing it for public use may violate existing privacy requirements. Therefore, privacy-preserving data publishing (PPDP) has been actively researched to share big data containing personal information for public use, while protecting the privacy of individuals with minimal data modification. Recently, with increasing demand for big data sharing in various area, there is also a growing interest in the development of software which supports a privacy-preserving data publishing. Thus, in this paper, we develops the system which aims to effectively and efficiently support privacy-preserving data publishing. In particular, the system developed in this paper enables data owners to select the appropriate anonymization level by providing them the information loss matrix. Furthermore, the developed system is able to achieve a high performance in data anonymization by using distributed Hadoop clusters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.