• Title/Summary/Keyword: Prismatic Joints

Search Result 27, Processing Time 0.022 seconds

Closed Form Inverse Kinematic Solutions for General Combination of Three-Joint Manipulator (3관절 매니퓰레이터의 일반적 조합에 대한 역기구학적 폐형해)

  • 한규범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.363-368
    • /
    • 1995
  • A general method of solving inverse kinematics of three-joint manipulator composed of revolute joints or prismatic joints or combinations of those joints is presented in this study. In completing real-time control, it is very important to obtain the closed form solutions of inverse kinematics rather than iterative numerical solutions, because iterative numerical solutions are generally much slower than the corresponding closed form solutions. If it is possible to obtain the inverse kinematic solutions for general cases of considering twist anlges and offsets, the manipulator work space can be designed and enlarged more effciently for specific task. Moreover, in idustrial manipulators, the effect of main three joints is larger than that of the other three joints related to orientation in the view of work space. Therfore the solutions of manin three-joint are considered. Even The inverse kinematic equations are complicatedly coupled, the systematical solving process by using symbolic calculation is presented.

  • PDF

A Piezo-Driven Miniaturized XY Stage with Two Prismatic-Prismatic Joints Type Parallel Compliant Mechanism (2 개의 병진-병진 관절형 병렬 탄성 메커니즘을 갖는 압전구동 소형 XY 스테이지)

  • Choi, Kee-Bong;Lee, Jae Jong;Kim, Gee Hong;Lim, Hyung Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1281-1286
    • /
    • 2013
  • In this paper, a miniaturized stage with two prismatic-prismatic joints (2-PP) type parallel compliant mechanism driven by piezo actuators is proposed. This stage consists of two layers which are a motion guide layer and an actuation layer. The motion guide layer has 2-PP type parallel compliant mechanism to guide two translational motions, whereas the actuation layer has two leverage type amplification mechanisms and two piezo actuators to generate forces. Since the volume of the stage is too small to mount displacement sensors, the piezo actuators embedding strain gauge sensors are chosen. With the strain gauge-embedded piezo actuators, a semi-control is implemented, which results in hysteresis compensation of the stage. As the results, the operating range of $30{\mu}m$, the resolution of 20 nm, and the bandwidth of 400 Hz in each axis were obtained in the experiments.

Kinematic Analysis and Optimal Design of 3-PPR Planar Parallel Manipulator

  • Park, Kee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.528-537
    • /
    • 2003
  • This paper proposes a 3-PPR planar parallel manipulator, which consists of three active prismatic Joints, three passive prismatic joints, and three passive rotational joints. The analysis of the kinematics and the optimal design of the manipulator are also discussed. The proposed manipulator has the advantages of the closed type of direct kinematics and a void-free workspace with a convex type of borderline. For the kinematic analysis of the proposed manipulator, the direct kinematics, the inverse kinematics, and the inverse Jacobian of the manipulator are derived. After the rotational limits and the workspaces of the manipulator are investigated, the workspace of the manipulator is simulated. In addition, for the optimal design of the manipulator, the performance indices of the manipulator are investigated, and then an optimal design procedure Is carried out using Min-Max theory. Finally. one example using the optimal design is presented.

Analysis of a Planar 3 DOF RCC Mechanism using Prismatic Joint Compliances (미끄럼 관절 콤플라이언스를 활용한 평면형 3 자유도 RCC 메카니즘의 해석)

  • 김희구;김동국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.611-616
    • /
    • 1994
  • Most of Commercial Remote Center Compliance(RCC) devices have been designed using deforma ble structures. In this work, we propose another type of assembly devices which generate the compliance effec ts by attaching the compliances (or spring) at the prismatic joints of the griven mechainsm. First, the kinematic analysis for a parallel-type planar 3-degree-of-freedom mechanism is performed using modified transfer method of generalized coordinate. Then, compliance characteristics for the mechanism using prismatic joint compliances are investigated. In particular, when the system maintains its symmetric configuration, the mechanism is show n to have RCC points at the center of the workspace. Finally, sensitivity analysis around RCC points is perfor med.

  • PDF

Kinimatic Analysis of a New Clss of 6-DOF Parallel Manipulator (새로운 6자유도 병렬 매니퓰레이터의 기구학 해석)

  • Byun, Yong-Kyu;Jo, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.414-430
    • /
    • 1996
  • In this paper, a new kinematic structure of a parallel manipulator with six Cartesian degrees of freedom is proposed. It consists of a platform which is connected to a fixed base by means of 3-PPSP(parameters P, S denote the prismatic, spherical joints) subchains. Each subchain has a link which is concected to a passive prismatic joint at the one end and a passive spherical joint at the other. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. This arrangement provides a basis to control all six Cartesian degrees of motion of the platform in space. Due to its efficient architecture, the colsed-form solutions of the inverse and forward kinematics can be obtained. As a consequence, this new kinematic structure can be servo controlled using simple inverse kinematics becaese forward kinematics allows for measuring the platform's position and orientation in Cartesian space. Furthermore, the proposed structure provides an effective functional workspace. Series of simulations are performed to verify the results of the kinematics analyses.

Development of a general purpose software package for robot simulation (범용 로보트 시뮬레이션 팩키지 개발에 관한 연구)

  • 강대희;주광혁;김학표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.5-8
    • /
    • 1986
  • The simulation algorithm for all kinds of robots with arbitrary degrees of freedom which are combined with revolute joints or prismatic joints, or combinations was studied and implemented. This simulation package is composed of trajectory planning routine, control routine, kinematics routine using Newton-Raphson method, dynamics based on Newton-Euler method with four-bar linkage analysis, input routine and output routine.

  • PDF

Stable Walking for an Inverted Pendulum Type Biped Robot (도립 진자형 이족보행로봇을 위한 안정보행)

  • Kang, Chan-Su;Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.456-459
    • /
    • 2003
  • This paper deal with the biped walking stability by inverted pendulum type balancing joints. This model is hard to interpretation for the nonlinearity caused by upper direction movement then conventional model which have roll and prismatic joints. We can interpret this model by a linear approximation or interpolation method. This paper use a linear approximation method that can decide a movement of upper direction. Inverted pendulum type balancing joints have a advantage of less movement for keep stability and similar with human than conventional model and this model can be used for humanoid robot. We can see a stability of biped by ZMP(Zero Moment Point). Genetic algorithm is used for trajectory planning that is important for stable walking of biped.

  • PDF

Control of a Biped Walking Robot using ZMP Formulation (균형점 정형화를 이용한 이족보행로봇 제어)

  • Lim, Sun-Ho;Kim, Jin-Geol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • This paper is concerned with the balancing motion formulation and the control of ZMP (zero moment point) for a biped walking robot with balancing joints. The balancing equation of a biped robot can be modeled as the second order non-homogeneous differential equation, which makes it possible to plan the desired trajectories for various gaits or motions. Also, the balancing motion can be defined easily by solving the differential equation without pre-processing or heuristic procedures. The actual experiments are performed on biped walking robot system IWR-III, developed in our Automatic Control Lab. The system has the structure of three pitches in each leg, and one roll and one prismatic type in balancing joints. The walking simulations and the experimental results on IWR-III are shown using the proposed formula and control algorithm.

  • PDF

Nonlinear Friction Compensation using the Information of Integral Controller (적분 제어기 정보를 이용한 비선형 마찰보상)

  • 송진일;최용훈;유지환;권동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-119
    • /
    • 2000
  • This paper presents simple and effective nonlinear friction compensation methods. When the direction of position command reverses, the integrator output of the PID controller does not change the sign of its output instantaneously, due to friction at zero velocity, i.e. stiction resulting tracking errors, that results in continuous push even though the command direction has been changed. To overcome this problem, we attempt to reverse the sign of the integrator output as the sign of velocity changes. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Shperical joints) in-parallel 6-D.O.F manipulator. The control strategy has been analyzed for stability. Also discussed are disturbance observer and velocity observer approaches for friction compensation.

  • PDF

Trajectory Tracking Performance Analysis of Underwater Manipulator for Autonomous Manipulation

  • Chae, Junbo;Yeu, Taekyeong;Lee, Yeongjun;Lee, Yoongeon;Yoon, Suk-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.180-193
    • /
    • 2020
  • In this study, the end-effector tracking performance of a manipulator installed on a remotely operated vehicle (ROV) for autonomous underwater intervention is verified. The underwater manipulator is an ARM 7E MINI model produced by the ECA group, which consists of six joints and one gripper. Of the six joints of the manipulator, two are revolute joints and the other four are prismatic joints. Velocity control is used to control the manipulator with forward and inverse kinematics. When the manipulator approaches a target object, it is difficult for the ROV to maintain its position and posture, owing to various disturbances, such as the variation in both the center of mass and the reaction force resulting from the manipulator motion. Therefore, it is necessary to compensate for the influences and ensure the relative distance to the object. Simulations and experiments are performed to track the trajectory of a virtual object, and the tracking performance is verified from the results.