• Title/Summary/Keyword: Prism Pattern

Search Result 80, Processing Time 0.028 seconds

Mechanical Machining of Prism pattern (프리즘 패턴의 기계적 절삭 가공)

  • Yoo Y. E.;Hong S. M.;Je T. J.;Choi D. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.110-113
    • /
    • 2005
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. Many applications have the patterns on their surface and the size of the pattern keep decreasing down to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricate prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA Some of cutting conditions are investigated including cutting force, cutting depth and speed for different core materials.

  • PDF

Mechanical Machining of Prism Pattern (프리즘 패턴의 기계적 절삭 가공)

  • Yoo Y. E.;Hong S. M.;Je T. J.;Choi D. S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.71-75
    • /
    • 2006
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. The size of the surface patterns in most applications is decreasing to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricated prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA. Some cutting conditions were investigated including cutting force, cutting depth and speed for different core materials.

A Study on Manufacturing of LCD Prism Sheets Through Silicon Anisotropic Etching (실리콘 이방성 식각을 통한 LCD 프리즘 시트 제작 연구)

  • Jeon, Kwangseok;Ryoo, Kunkul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.377-381
    • /
    • 2008
  • Prism sheet of LCD BLU which depends on supply from Japan and U.S.A was studied by using Si anisotropic etching and injection molding technologies. First, the prism sheet was patterned on Si wafer through photolithography, and the best conditions of Si etching were determined through etching Si wafer with TMAH to obtain straight optimized zigzag patterns, and a cross pattern to provide light diffusion and concurrent focusing. The etch rate of TMAH was concluded to be constant for $25wt%-70^{\circ}C$ condition. Ni stamp of prism sheet was made by electrodeposition using patterned Si wafer, normal or fast H/C(Heating/Cooling) injections were carried out to fabricate prism sheet. It was known that fast H/C injection could fabricate prism sheet more accurately than normal injection. Zigzag patterns and the cross pattern showed higher transmissivity than the straight patterns because of light diffusion through diagonal direction. The fast H/C injection for zigzag patterns showed lower transmissivity than normal injection because there occurred more light diffusion through precise injection patterns, but the fast H/C injection for straight patterns showed only refraction without diffusion, causing lower transmissivity than normal injection.

Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation (미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구)

  • Je, T.J.;Park, S.C.;Lee, K.W.;Noh, J.S.;Choi, D.S.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

A study on the micro pattern replication properties of large area in injection molding (대면적 미세패턴 사출성형에서의 전사 특성 실험)

  • Kim, T.H.;Yoo, Y.E.;Je, T.J.;Kim, C.W.;Park, Y.W.;Choi, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.205-208
    • /
    • 2007
  • We injection molded a thin plate with micro prism patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, injection rate or packing pressure. The size of the $90^{\circ}$ prism pattern is $50{\mu}m$ and the size of the plate is $400mm{\times}400mm$. The thickness is 1mm. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns of the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF

Tool Wear Rate and Accuracy of Patterns in Micro Prismatic End-milling (마이크로 프리즘 패턴의 엔드밀링에서 공구 마모와 정밀도)

  • An, Ju-Eun;Lee, Jung-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • Micro prism pattern is applying in order to get increase of luminance, control the light, and so forth especially in optics and display industry. Most patterns are fabricated by lithography, planning, and EDM, but they have limitations on the productivity or the unit cost of produce. However, ultra precision mold is one of the processes able to replace it, and assure high productivity required by industries. In this investigation, micro prismatic end-milling is suggested in order to fabricate the pattern effectively. Micro prism pattern having $100{\mu}m$ of pitch and height was machined on STD-11. After machining, the flank and boundary wear on micro end mill were measured and analyzed, as well as burr formation and dimensional accuracy of fabricated pattern were evaluated. Thus the optimal cutting conditions were derived.