• Title/Summary/Keyword: Printing pressure

Search Result 210, Processing Time 0.023 seconds

Development of Capacitive-type Pressure Mapping Sensor using Printing Technology

  • Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.24-27
    • /
    • 2017
  • In this study, I developed a simple and low cost process-printing a silver, carbon, dielectric, adhesive layer on PET films using screen printing technology and bonding the two films face-to-face-to fabricate a low price capacitive pressure-mapping sensor. Both electrodes forming the pressure measuring capacitor are arranged between the two PET films similar to a sandwich. Therefore, the sensor has the advantage of minimizing the influence of external noise. In this study, a $10{\times}10$ capacitance-type pressure-mapping sensor was fabricated and its characteristics were analyzed.

True Rolling Technique of New Gravure-Offset Printing for R2R Over-Piling (R2R 중첩인쇄를 위한 그라비어오프셋인쇄의 투루롤링 기술)

  • Choi, Byung-Oh;Jo, Jeong-Dai;Kim, Dong-Soo;Lim, Kyu-Jin;Ryu, Byung-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1131-1140
    • /
    • 2011
  • A new rotary gravure-offset printing unit is constructed by paralleling a gravure plate cylinder, a blanket cylinder and a impression roller. A Muti-Unit Gravure-Offset Printing Press(MUGOP) equipped with a series of the 3 printing units is utilized for roll-to-roll fine printing. Its core technology is precise over-piling printing of fine patterns. The severe problems of 'slurring' and 'doubling' in typical offset printing are unavoidable, which can be eliminated by applying a soft pad-type blanket cylinder and the unique 'true rolling' technique. Nip pressure between the blanket cylinder and the plate cylinder is measured by the constant pressure control system which equipped with load cells attached on the cylinders' axes. The running circumference of the blanket cylinder is increased to reach the same circumference of the plate cylinder as the pressure increasing, so that the specifications of the blanket cylinder is determined by the relationships of its shore hardness, diameter and nip pressure. When a softer blanket is used, a blanket cylinder of smaller diameter could give higher nip pressure. Realization of the true rolling technique on the MUGOP makes multilayer printing possible as well as fine printing in printed electronics.

Development of Technology for Printing Pressure Control of Blanket Cylinder (블랭킷 실린더의 인압제어 기술개발)

  • Ham, Yeong-Bok;Yun, So-Nam;Kim, Gwang-Yeong;Choe, Byeong-O
    • 연구논문집
    • /
    • s.32
    • /
    • pp.15-22
    • /
    • 2002
  • In offset or intaglio printing machine, it's operated with combination of blanket cylinder and impression cylinder. The blanket cylinder has some number of grooves to attach the blanket on surface. In case of operating the printing machine, it has generate mechanical impact noise when the two cylinders encounter with the grooves. So, in this study, we developed a printing pressure control algorithm with hydraulic servo control system. We also proposed simulation model of experimental device to analysis the throw on force response of hydraulic servo actuator. Finally, we have reduced the mechanical impact noise and improved printing quality with a groove detecting signal and PI control of hydraulic servo actuator.

  • PDF

Optimization of Manufacturing Conditions of Pressure-Sensitive Ink Based on MWCNTs (MWCNTs 기반 인쇄형 압력감응잉크의 제조 조건 최적화)

  • Park, Sung-Chul;Lee, In-Hwan;Bae, Yong-Hwan;Kim, Ho-chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.1-7
    • /
    • 2019
  • Materials that can be used for 3D printing have been developed in terms of phase and functionality. Materials should also be easily printed with high accuracy. In recent years, the concept of 4D printing has been extended to materials whose physical properties such as shape or volume can change depending on the environment. Typically, such high-performance 3D printing materials include bio-inks and inks for sensors. This study deals with the optimization of the manufacturing method to improve the functional properties of the pressure sensitive material, which can be used as a sensor based on change of the resistance according to the pressure. Specifically, the number of milling for dispersion, the ratio of hardener for controlling elasticity, and the content of MWCNTs were optimized. As a result, a method of manufacturing a highly sensitive pressure-sensitive ink capable of use in 3D printing was introduced.

The Effects of Ink Dispersion and Printing Conditions on Printed Mottle (잉크 분산 및 인쇄조건이 인쇄 모틀에 미치는 영향)

  • Ha, Young-Baeck;Lee, Yong-Kyu;Kim, Chang-Keun;Oh, Sung-Sang;Lim, Jong-Hag
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.41-46
    • /
    • 2006
  • Printed mottle of coated paper is one of the most common but the most difficult problem in offset printing. Printed mottle is caused by an uneven penetration of Ink into the paper, binder migration, etc. For a high quality printing, development of new paper coating technologies to prevent print mottle is required. So for, the study of solving printed mottle is coated paper absorption controlled by base paper sizing and coating layer binder migration control. As a results, printed mottle has improved in coated paper. But printing is worked by interaction of printing ink, coated paper and printing pressure, then we need to understand of interaction printing work and coated paper. This research focused on a way of improving printed mottle by investigating various printing conditions such as ink dispersion, nip condition and amount of ink transfer using IGT printability tester.

Effect of Pressure Based Customized 3-Dimensional Printing Insole in Pediatric Flexible Flat Foot Patients (소아 편평족 환자에서 Pressure Based Customized 3-Dimensional Printing Insole의 유용성)

  • Lee, Si-Wook;Choi, Jung-Hoon;Kwon, Hyuk-Jun;Song, Kwang-Soon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.3
    • /
    • pp.113-119
    • /
    • 2020
  • Purpose: A flatfoot that fails to form a longitudinal foot arch is a common lower limb deformity in children. This study evaluated the structural and functional effects of the insole for pediatric flexible flat foot (PFFF). Materials and Methods: Twenty-nine PFFF patients (20 boys and 9 girls, 58 feet) with bilateral symptomatic flatfoot deformities between February 2017 and May 2019 were included in this study. Sixteen patients (32 cases, study group) were treated with a pressured based 3-dimensional printing insole, and 13 patients (26 cases, control group) were followed up regularly without any treatment. Flatfoot was diagnosed by a lateral talo-first metatarsal angle of more than 4° in convex downward and talocalcaneal angles of more than 30° and a calcaneal pitch of less than 20°. The foot pressures, including the midfoot pressure, total foot pressure, and the ratio of the midfoot pressure to the total foot pressure, were evaluated by pedobarography. The clinical scores were assessed using the visual analogue scale (VAS), American Orthopaedic Foot and Ankle Society (AOFAS), and Pediatrics Outcomes Data Collection Instrument (PODCI) scores. Results: The mean age of the study group was 9.16 years, and the mean age of the control group was 7.73 years. The mean follow-up period was 16 months. The change in the lateral talocalcaneal angle was -4.664°±1.239° in the study group and -0.484°±1.513° in the control group. A significant difference in the amount of change of the lateral talocalcaneal angle was observed between the two groups (p=0.034). The midfoot pressures were similar in the two groups. Conclusion: Pressure based customized 3-dimensional printing insole in PFFF may have some effect on the hindfoot bony alignment, but it does not affect the changes in midfoot pressure.

Manufacturing and Performance Test of Obsolete Valve in NPP using DED Metal 3D Printing Technology (원전 단종 밸브의 DED 방식 금속 3D프린팅 제작 및 성능시험)

  • Kyungnam Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • The 3D printing technology is one of the fourth industrial revolution technology that drives innovation in the manufacturing process, and should be applied to nuclear industry for various purposes according to the manufacturing trend change. In nuclear industry, it can be applied to manufacture obsolete items and new designed parts in advanced reactors or small modular reactors (SMRs), replacing the traditional manufacturing technologies. A gate valve body was manufactured, which was obsolete in nuclear power plant, using DED(Directed Energy Deposition) metal 3D printing technology after restoring design characteristics including 3D design drawing by reverse engineering. The 3D printed valve body was assembled with commercial parts such as seat-ring, disk, stem, and actuator for performance test. For the valve assembly, including 3D printed valve body, several tests were performed, including pressure test, end-loading test, and seismic test according to KEPIC MGG and KEPIC MFC. In the pressure test, hydraulic pressure of 391kgf/cm2 was applied to 3D printed valve body, and no leak was detected. Also the 3D printed valve assembly was performed well in end-loading and seismic tests.

Improvement of Filling Characteristics of Micro-Bumps in the Stencil Printing Process (스텐실 프린팅 공정에서 미세범프의 성형성 향상을 위한 연구)

  • Seo, W.S.;Min, B.W.;Park, K.;Lee, H.J.;Kim, J.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • In the present study, the stencil printing process using solder paste are numerically analyzed. The key design parameters in the stencil printing process are the printing conditions, stencil design, and solder paste properties. Among these parameters, the effects of printing conditions including the squeegee angle and squeegee pressure are investigated through finite element (FE) analysis. However, the FE analysis for the stencil printing process requires tremendous computational loads and time because this process carries micro-filling through thousands of micro-apertures in stencil. To overcome this difficulty in simulation, the present study proposes a two-step approach to sequentially perform the global domain analysis and the local domain analysis. That is, the pressure development under the squeegee are firstly calculated in the full analysis domain through the global analysis. The filling stage of the solder paste into a micro-aperture is then analyzed in the local analysis domain based on the results of the preceding global analysis.