• 제목/요약/키워드: Printing Technique

검색결과 369건 처리시간 0.122초

금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험 (3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys)

  • 송용욱;김정준;박수원;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

CAD시스템을 이용한 초상화 작성 방법 (A Method for Portrait Drawing using Computer Aided Design)

  • 박삼진;이수홍;류갑상;최두선;신보성
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.155-164
    • /
    • 1993
  • A drawing technique which use only fine curves and dashed lines is widely adopted in banknotes and post stamps printing. Engraving of the curves and lines are traditionally performed by hand skill which provides low productivity in printing. As an effort for higher productivity and quality, a drawing automation method which can easily produce NC codes and drawings for a mechanical or chemical engraving is proposed. An initial work shows that it is possible to draw a portrait by contolling the width and length of predetermined fine lines according to the gray scale at the end points of each line. User interface functions of a commercial CAD system are heavily employed to exploit the presented method.

  • PDF

Dependence of Xe Plasma Flat Fluorescent Lamp On the Electrode Gap and Dielectric Layer Thickness

  • Kang, Jong-Hyun;Lee, Yang-Kyu;Heo, Sung-Taek;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1519-1521
    • /
    • 2007
  • In this work, a coplanar-type plasma flat fluorescent lamp having cross type of electrode was fabricated by screen printing and sealing technique. Cross type of electrode with a dielectric layer were screen-printed on a rear glass plate, and then fired at $550^{\circ}C$. Phosphor was printed on and fired at $450^{\circ}C$. Finally, the lamp was sealed by frit glass at $450^{\circ}C$. The lamp of cross electrode type was studied depending on the electrode gap and the thickness of dielectric layer.

  • PDF

Emission Characteristics of Flat Fluorescent Lamp for LCD Backlight Using Inert Gas Mixture

  • Heo, Sung-Taek;Lee, Yang-Kyu;Kang, Jong-Hyun;Yoon, Seung-Il;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1522-1525
    • /
    • 2007
  • In this study, flat fluorescent lamps (FFLs) having surface discharge structures was fabricated by screen printing technique and were studied using spectraradiometer and square pulse power supply. Two types of FFLs having different shapes of electrodes (crosstype and line-type structure) were compared with variation of discharge shape and mixed gas ratio.

  • PDF

A Novel Carbon Nanotube FED Structure and UV-Ozone Treatment

  • Chun, Hyun-Tae;Lee, Dong-Gu
    • Journal of Information Display
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2006
  • A 10" carbon nanotube field emission display device was fabricated with a novel structure with a hopping electron spacer (HES) by screen printing technique. HES plays a role of preventing the broadening of electron beams emitted from carbon nanotubes without electrical discharge during operation. The structure of the novel tetrode is composed of carbon nanotube emitters on a cathode electrode, a gate electrode, an extracting electrode coated on the top side of a HES, and an anode. HES contains funnel-shaped holes of which the inner surfaces are coated with MgO. Electrons extracted through the gate are collected inside the funnel-shaped holes. They hop along the hole surface to the top extracting electrode. In this study the effects of the addition of HES on emission characteristics of field emission display were investigated. An active ozone treatment for the complete removal of residues of organic binders in the emitter devices was applied to the field emission display panel as a post-treatment.

Properties of Xe plasma flat fluorescent lamp by screen printing

  • Lee, Yang-Kyu;Kang, Jong-Hyun;Yoon, Seung-Il;Kim, Tae-Kwon;Bae, Sung-Jo;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1386-1389
    • /
    • 2006
  • In this study, a plasma flat fluorescent lamp having a new structure was fabricated by screen printing technique. Coplanar types of silver electrodes with a dielectric layer were screen-printed on a rear glass plate, and then fired at $550^{\circ}C$ and $580^{\circ}C$, respectively. Phosphor was spin-coated on the dielectric layer with firing at $490^{\circ}C$. Several types of lamps were designed and its properties wee investigated with electrode shape, gas pressure, etc.

  • PDF

벡터 그래픽스를 이용한 초상화의 작성 방법 (A Vector Graphic Method for Portrait Drawing)

  • 박삼진
    • 한국CDE학회논문집
    • /
    • 제4권1호
    • /
    • pp.19-31
    • /
    • 1999
  • One of the non-photorealistic rendering method, a drawing technique which uses only fine curves and dashed line, is widely employed in an knots and post stamps printing. Engraving of the curves and lines are traditionally performed by human engravers which leads to low productivity in printing preparation. As an effort to improve productivity and quality, a drawing automation method which can easily produce a portrait composed of vector data for laser or chemical engraving is proposed. The method shows that it is possible to draw a portrait by controling the width and length of predefined fine lines according to the gray scales a the end points of each fine lines. A gradually controled weighting factor method is proposed in addition to the author previous works to prevent undesirable boundaries in an identical texture region. User interface functions of a commercial CAD system are heavily employed to exploit the presented method.

  • PDF

전도성 카본 잉크를 이용한 직류 저항형 습도센서 제작 및 평가 (Evaluation of DC Resistive Humidity Sensors Based on Conductive Carbon Ink)

  • 안태창
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.397-401
    • /
    • 2017
  • A DC resistance type humidity sensor using conductive carbon ink was fabricated and its performance was evaluated. The humidity sensor was fabricated using a screen printing technique and have a structure that does not require additional metal electrodes to measure resistance change. To evaluate the performance of the humidity sensor, we measured the DC resistance change under various relative humidity levels. The fabricated humidity sensor showed a resistance change of about $2.5{\sim}50k{\Omega}$ in 11 ~ 95% RH environment. It also shows a linear relationship in the relative humidity versus log DC resistance graph. In comparison with commercial humidity sensor under real environment, it can be confirmed that the resistance of the humidity sensor changes to almost the same level as the measured humidity. These results show that the resistance type humidity sensor can be operated stably in actual environment.

3D 프린팅으로 제작한 Ti-6Al-4V 재료의 Johnson-Cook 모델의 유동 응력 결정 (Flow Stress Determination of Johnson-Cook Model of Ti-6Al-4V Material using 3D Printing Technique)

  • 박대균;김태호;전언찬
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.64-69
    • /
    • 2018
  • This paper investigates the compressive deformation behavior of direct metal tooling (DMT), processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. Split Hopkinson Pressure Bar (SHPB) experiments were performed to determine the flow stress and the coefficients of the Johnson-Cook model. This model is described as a function of strain, strain rate, and temperature. SHPB experiments were performed to characterize the deformation behavior of specimens made with 3D printers, using Ti-6Al-4V material under high temperature and dynamic loading.