• Title/Summary/Keyword: Printing Optimization

Search Result 102, Processing Time 0.029 seconds

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

Optimization of Ozone Oxidation process for Decolorization form dyeing wastewater (염색폐수 색도저감을 위한 오존산화공정의 최적화)

  • Sin, Dong-Hun;Choe, Jang-Seung;Lee, Sang-Heon;Kim, Seong-Jin;Ryu, Seung-Han;Park, Jun-Hyeong;Choe, Seong-Uk
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.115-116
    • /
    • 2008
  • The textile wastewater discharged from printing and dyeing processes is characterized by high chemical oxygen demand(COD), low biochemical oxygen demand(BOD), and heavy color. The release of dyes into the environment constitutes only small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. In this study, We are investigated to optimization of Ozone Oxidation process for Decolorization.

  • PDF

Process Optimization for Flexible Printed Circuit Board Assembly Manufacturing

  • Hong, Sang-Jeen;Kim, Hee-Yeon;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • A number of surface mount technology (SMT) process variables including land design are considered for minimizing tombstone defect in flexible printed circuit assembly in high volume manufacturing. As SMT chip components have been reduced over the past years with their weights in milligrams, the torque that once helped self-centering of chips, gears to tombstone defects. In this paper, we have investigated the correlation of the assembly process variables with respect to the tombstone defect by employing statistically designed experiment. After the statistical analysis is performed, we have setup hypotheses for the root causes of tombstone defect and derived main effects and interactions of the process parameters affecting the hypothesis. Based on the designed experiments, statistical analysis was performed to investigate significant process variable for the purpose of process control in flexible printed circuit manufacturing area. Finally, we provide beneficial suggestions for find-pitch PCB design, screen printing process, chip-mounting process, and reflow process to minimize the tombstone defects.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

Optimization of Ingredients for Vacuum Glazing Pillar Using DOE (실험계획법을 이용한 진공유리 Pillar 재료의 혼합비율 최적화)

  • Kim, Jae-Kyung;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1002-1007
    • /
    • 2012
  • The manufacturing method of the pillar is one of the main process where it is used in vacuum glazing and semi-conductor display field. Pillar can be arranged by screen printing method. However it may unable to spread all pattern of metal mask according to the ingredient of the mixture. In addition, spreaded mixture doesn't maintain the original shape according to the viscosity. In this research, the pillar tried to be arranged through the screen printing by using the inorganic compound of the alumina and silica base. This study suggested a method in which it can decrease the test frequency and design the composition of the vacuum glass pillar by using the mixture design.

A Study on the Optimization of color in Digital Printing (디지털 인쇄에 있어서 컬러의 최적화에 관한 연구)

  • Kim, Jae-Hae;Lee, Sung-Hyung;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.1
    • /
    • pp.51-64
    • /
    • 2008
  • In this paper, an experiment was done where the input(scanner, digital still camera) and monitor(CRT, LCD) device used the linear multiple regression and the GOG (Gain-Offset-Gamma) characterization model to perform a color transformation. Also to color conversion method of the digital printer it used the LUT(Look Up Table), 3dimension linear interpolation and a tetrahedron interpolation method. The results are as follows. From color reappearance of digital printing case of monitor, the XYZ which it converts in linear multiple regression of input device it multiplied the inverse matrix, and then it applies the inverse GOG model and after color converting the patch of the result most which showed color difference below 5 at monitor RGB value. Also, The XYZ which is transmitted from the case input device which is a printer it makes at LAB value to convert an extreme, when the LAB value which is converted calculating the CMY with the LUT and tetrahedral interpolations the color conversion which considers the black quantity was more accurate.

  • PDF

A Statistical Analysis for Slot-die Coating Process in Roll-to-roll Printed Electronics (롤투롤 슬롯-다이 대면적 코팅 공정 최적화를 위한 통계적 모델링 방법)

  • Park, Janghoon;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2013
  • Recent advances in printing technology have increased the productivity of the roll-to-roll (R2R) printing process for printed circuitry. In the R2R printed electronics, characteristics of printed and coated layers are one of the most important issues that determine the functional quality of final products. The slot-die technology can coat a large area with high uniformity using low-viscosity materials; determining the process parameters is important to obtain excellent coating qualities. In this study, a viscocapillary model was used to predict qualities of coated layers and patterns. On the basis of analysis results, a novel meta model was derived using design of experiment methodology to improve accuracy. Sensitivity analysis was performed to define major parameters in R2R slot-die coating process. The coating speed was found to most significantly affect the coated layer thickness and was easily controlled. The performance of the proposed model is verified through experimental studies. Based on the statistical analysis results, R2R slot die process can be optimized to guarantee a desired thickness.

Optimization Research of 3D Printer Associated with Properties of Photocurable Resins for Ocular Prosthesis Producing (의안 제작을 위한 광경화 방식 3D 프린터에 적용 가능한 소재 선정 및 장비 최적화를 위한 실험적 연구)

  • Kim, So Hyun;Yoon, Jin Sook;Yoo, Sun Kook
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.55-61
    • /
    • 2019
  • Recently, various researches on materials and equipment have been actively conducted to overcome the limitations of conventional output methods due to the increase of diversity of 3D printing materials and to adopt an output method suitable for the characteristics of each material. As the range applicable to outputable materials is expanded, manufacturing of medical devices applied to patients is in a more rapid growth trend than other fields. In this study, we investigated the suitable materials for fabricating 3D printer using photocurable resin. As a result, one suitable material was selected through biological safety experiment and thermal stability experiment. Next, to optimize the output of the selected materials, we have developed a system that optimizes the equipment according to the characteristics of the material. The results of this study enabled the implementation of personalized medical implants that could not be made from 3D printer dependent materials, thereby overcoming the limitations of existing 3D printer output conditions and dedicated materials.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.