• 제목/요약/키워드: Printing Optimization

검색결과 101건 처리시간 0.024초

친환경과 표준 인쇄를 고려한 인쇄 최적화에 관한 연구: 프리 프레스 (A Study on the Printing Optimization by considering Eco-Friendly Printing and Printing Standards: Prepress)

  • 김준곤;조가람;구철회
    • 한국인쇄학회지
    • /
    • 제30권3호
    • /
    • pp.1-11
    • /
    • 2012
  • According as the latest printing technology is converted from analogue to digital, life cycle of a printing technology is shortened and the existent printing companies were faced always in a new technology. Specially, way of foreign countries export opened because globalization of printing market is accelerated. But, printing buyers of advanced nation require standard printing process control. fect at product process step. Emphasized in IPA technical conference for past several years tendency about graphic art color proofing and technical analysis and comparison going through Color Proofing RoundUP. These researchers have developed a color management technology. A specially developed printing technology and reference characterization data brought certain high quality elevation in a graphic art proofing technology. When excessive GCR method application supervise printing, width of color conversion necks by requiring a lot of color conversions than proofing. But, these point is lacking relatively than a lot of effects that GCR gives. Therefore, correct interests of GCR algorithm and verification step to forecast beforehand result about actuality application are positively necessary. Therefore, this research forced into input file which is applied with different levels from input to print for printing optimization that consider standard printing with eco-friendly by method to solve these problem. And experimented using manuscript who GCR level is applied as is different in each field, and analyzed the result. Also, it is verification method by step to last printing from input file that solve been the various quality who generate in actuality field through these analysis result. ICC color management confirmed printing optimization process applying GCR algorithm improved to base.

MWCNTs 기반 인쇄형 압력감응잉크의 제조 조건 최적화 (Optimization of Manufacturing Conditions of Pressure-Sensitive Ink Based on MWCNTs)

  • 박성철;이인환;배용환;김호찬
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.1-7
    • /
    • 2019
  • Materials that can be used for 3D printing have been developed in terms of phase and functionality. Materials should also be easily printed with high accuracy. In recent years, the concept of 4D printing has been extended to materials whose physical properties such as shape or volume can change depending on the environment. Typically, such high-performance 3D printing materials include bio-inks and inks for sensors. This study deals with the optimization of the manufacturing method to improve the functional properties of the pressure sensitive material, which can be used as a sensor based on change of the resistance according to the pressure. Specifically, the number of milling for dispersion, the ratio of hardener for controlling elasticity, and the content of MWCNTs were optimized. As a result, a method of manufacturing a highly sensitive pressure-sensitive ink capable of use in 3D printing was introduced.

Printing Optimization of 3D Structure with Lard-like Texture Using a Beeswax-Based Oleogels

  • Hyeona Kang;Yourim Oh;Nam Keun Lee;Jin-Kyu Rhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1573-1582
    • /
    • 2022
  • In this study, we investigated the optimal conditions for 3D structure printing of alternative fats that have the textural properties of lard using beeswax (BW)-based oleogel by a statistical analysis. Products printed with over 15% BW oleogel at 50% and 75% infill level (IL) showed high printing accuracy with the lowest dimensional printing deviation for the designed model. The hardness, cohesion, and adhesion of printed samples were influenced by BW concentration and infill level. For multi-response optimization, fixed target values (hardness, adhesiveness, and cohesiveness) were applied with lard printed at 75% IL. The preparation parameters obtained as a result of multiple reaction prediction were 58.9% IL and 16.0% BW, and printing with this oleogel achieved fixed target values similar to those of lard. In conclusion, our study shows that 3D printing based on the BW oleogel system produces complex internal structures that allow adjustment of the textural properties of the printed samples, and BW oleogels could potentially serve as an excellent replacement for fat.

3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증 (Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing)

  • 박희만;이규빈;김진산;선채림;윤민호
    • 한국전산구조공학회논문집
    • /
    • 제35권3호
    • /
    • pp.191-196
    • /
    • 2022
  • 본 연구에서는 3D 프린팅 FDM 방식의 적층 방향에 따라 기계적 물성이 달라지는 이방성 특성을 확인하고 이를 이용하여 위상 최적설계를 수행하였다. 벤치마크 문제인 자동차 현가장치 부품 중 하나인 로어 컨트롤 암에 대하여 밀도법 기반 위상 최적설계를 수행하였으며, 외부 하중과 이방성 특성에 따라 위상 최적결과가 다르게 나타나는 것을 확인하였다. 이를 이용하여 최적화된 모델에 대하여 3D 프린터로 적층 방향을 달리하여 2가지 시험품을 제작하였으며 인장시험을 수행하였다. 시험시 3D 비접촉 변형률 측정기를 이용하여 변형률을 구하였으며 이를 CAE 응답해석으로 얻은 변형률과 비교한 결과가 정량 및 정성적으로 일치하는 것을 확인하였다. 3D 프린팅 적층 방향을 고려한 위상 최적모델의 인장 실험 결과를 통해 해당 최적설계 방법론의 유효성을 검증하였다.

내부 결합 강도 개선을 위한 인쇄용지 제조 최적화 연구 (Optimization of the Paper Making Raw Materials for Improvement of the Internal Bonding Strength of Printing Paper)

  • 김병현
    • 한국인쇄학회지
    • /
    • 제30권3호
    • /
    • pp.35-43
    • /
    • 2012
  • Internal bonding strength of printing paper was increased with sea-algae pulp treatment. Spacially, 9% contents sea-algae pulp treatment in the hardwood pulp are more effective than in the softwood pulp. Most effective mixture ratio of the raw matrials for improvement of the internal bonding strength are softwood pulp 30%, hardwood pulp 70%, sea-algae pulp 9%. Internal bonding strength is effective in more sea-algae pulp contents and softwood pulp contents and wetness.

결정질 실리콘 태양전지의 스크린 프린팅 공정 최적화 연구 (Optimization of Screen Printing Process in Crystalline Silicon Solar Cell Fabrication)

  • 백태현;홍지화;최성진;임기조;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2011
  • In this paper, we studied the optimization of the screen pringting method for crystalline silicon solar cell fabrication. The 156 * 156 mm2 p-type silicon wafers with $200{\mu}m$ thickness and $0.5-3{\Omega}cm$ resistivity were used after texturing, doping, and passivation. Screen printing method is a common way to make the c-Si solar cell with low-cost and high-efficiency. We studied the optimized condition for screen printing with crystalline silicon solar cell as changing the printing direction (finger line or bus bar), finger width, and mesh angle. As a result, the screen printing with finger line direction showed higher finger height and better conversion efficiency, compared with one with bus bar direction. The experiments with various finger widths and mesh angles were also carried out. The characteristics of solar cells was obtained by measuring light current-voltage, optical microscope and electroluminescence.

  • PDF

Prepress 중심으로 한 Lean Printing System에 관한 연구 (The Study of the Lean Printing System on the Prepress)

  • 이상현;하영백;오성상;최재혁;유건룡;이재수
    • 한국인쇄학회지
    • /
    • 제29권3호
    • /
    • pp.77-96
    • /
    • 2011
  • Most of all manufacturing industries are pursuing the manufacturing process innovation through the production process automation but the printing industry still does not get out of the analog ways of the entire process compared the entire manufacturing industry. Today, many printing enterprises have the difficulties by the short for delivery, multi-item small amount printing, high quality, rise in raw material cost, drop in receiving order cost, and etc. The printing industry can get over these difficulties and issues by implementing the compact workflow line, merge with the others, automatization and networking, minimization of the repetitive operation, efficiency of the working process, optimization of the operators' value creation, minimization of cost and materials and fast make-ready. The object of this thesis establishes the experimental data and study cases applicable in the printing industry by having high labor productivity and work in line with printing industry processes through "lean printing system".

고품질 오프셋 컬러인쇄를 위한 잉크젯 방식 교정인쇄에 최적화에 관한 연구 (A Study on the Optimization of Inkjet Proofing for High Quality Offset Color Printing)

  • 김성수;강상훈
    • 한국인쇄학회지
    • /
    • 제24권2호
    • /
    • pp.69-78
    • /
    • 2006
  • Proofing is one of the inspection operations of printing and can be considered a process control step. The three main kinds of proofs are press proofs, photomechanical proofs, and digital proofs. Photomechanical and digital proofs are also generally refered to as "off-press" proofs. Off-press color proofs are more economical than press proofs. Digital proofs offer fast production time along with a much lower cost per page. Hard-copy digital proofs can be output using thermal transfer printers, ink jet printers, and color laser copiers, as well as dye sublimation and electrophotographic technology. Ink jet method is commonly using because of the reasonal price. But ink jet system is difficult to reproduce an exact color proof. This research was carried out for the purpose of optimization of ink jet color proofing, using two kinds of ink jet printers with 6 colors (C, M, Y, K, mC, mM) and 4 colors (C, M, Y, K) system.

  • PDF

임피던스 센서 제작을 위한 잉크젯 기반 패턴 IDE 적층공정 최적화 연구 (A Study on Optimization of Inkjet-based IDE Pattern Process for Impedance Sensor)

  • 정현윤;고정범
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.107-113
    • /
    • 2022
  • At present, it is possible to manufacture electrodes down to several micrometers (~ ㎛) using inkjet printing technology owing to the development of precision ejection heads. Inkjet printing technology is also used in the manufacturing of bio-sensors, electronic sensors, and flexible displays. To reduce the difference between the electrode design/simulation performance and actual printing pattern performance, it is necessary to analyze and optimize the processable area of the ink material, which is a fluid. In this study, process optimization was conducted to manufacture an IDE pattern and fabricate an impedance sensor. A total of 25 IDE patterns were produced, with five for each lamination process. Electrode line width and height changes were measured by stacking the designed IDE pattern with a nanoparticle-based conductive ink multilayer. Furthermore, the optimal process area for securing a performance close to the design result was analyzed through impedance and capacitance. It was observed that the increase in the height of stack layer 4 was the lowest at 4.106%, and the increase in capacitance was measured to be the highest at 44.08%. The proposed stacking process pattern, which is optimized in terms of uniformity, reproducibility, and performance, can be efficiently applied to bio-applications such as biomaterial sensing with an impedance sensor.

금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구 (Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center)

  • 정원용;정호인;이춘만
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.