• Title/Summary/Keyword: Printing Head

Search Result 104, Processing Time 0.028 seconds

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

The Current Status of 3D Printing Use in Fashion Industry and Utilization Strategies for Fashion Design Departments (패션 산업 내 3D 프린팅 사용 현황 및 패션디자인과 내의 활용방안)

  • Jeong, Hwa-Yeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.18 no.3
    • /
    • pp.245-260
    • /
    • 2016
  • This study explored cases of 3D printing utilization in domestic and overseas fashion industries, and presented utilization strategies for fashion design departments in universities in future by grasping characteristics of newly appearing distribution types through 3D printing. Cases of producing costumes using 3D printing in fashion industry comprised a bikini using the material of Nylon12 that continuum fashion demonstrated, innovative 3D costumes by Iris Van Herpen, Tweed Suit using the material that Chanel manufactured with 3D printing technology, but they were limited to experimental fashion works due to limitations of 3D printer material and printing size. On the other hand, in fashion accessories, with jewelry and shoes at the head of the list, MCM and Kipling also demonstrated bags using this technology, and Elvis Pompilio and Gabriela Ligenza demonstrated 3D printing hat products as well. Except the above, as in glasses and neckties utilizing 3D printing, owing to reduced limitations of time, size and material, 3D printing was found to be utilized in fashion accessories other than costumes. Recently there has been a new consumption and distribution structure coming up focusing on 3D printing technology. That is, in overseas countries, content platforms sharing products modeled by oneself has rapidly appeared, and in our country as well, funnypoly, a 3D content platform appeared in 2015. The appearance of these new types of distribution structures means that the common people can produce design contents, and we believe that it may bring about a change in the traditional way of distribution structure. To walk in step with this change, it is believed that it is necessary for fashion design departments to raise college faculty members who can educate 3D printing, develop curriculum to educate 3D printing, and develop experiential programs connected with middle and high schools.

  • PDF

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

Effects of Substrate and Surface Energy on Ink-jet Printing

  • Lee, Jin-Ho;Kim, Hong-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1457-1458
    • /
    • 2009
  • The fundamental parameters controlling ink-jet printing liquids are the viscosity and surface energy. The wetting contact angle determines the spread of a liquid drop on the surface and depends on the relative surface energy. The characteristics of silver ink-jet printing were studied with control of surface energy and head temperature. Polyethylene terephthalate(PET) film and Si-wafer(ptype) were used as substrates and atmospheric plasma was treated to control the surface energy. With silver ink, the hydrophilic surface treatment could reduce the radius of droplets due to the hydrophobic nature of silver ink.

  • PDF

Ink-Jet Printing Technology for Color Filter

  • Jian, Zih-Jie;Liou, Wei-Jen;Lin, Hong-Ming;Lo, Yu-Cheng;Liu, Pei-Yu;Wang, Jiun-Ming;Li, Huai-An
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.463-466
    • /
    • 2007
  • It is a revolutionary technology of making color filters by ink-jet printing. The difficult reason of this method is that it is a merger technology of many fields. There must be perfect orientation systems, designed capacity and production equipment of automatically controlled printing head. Moreover, accurate ink with modification is also needed.

  • PDF

Experimental Investigation of Electrostatic Dripping and Atomization Mode through Non-MEMs based Nozzle Design

  • Choi, Kyung-Hyun;Dang, Hyun-Woo;Rehmani, M.A. Ali
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.13.2-13.2
    • /
    • 2009
  • Electrostatic printing either it is drop-on-demand or continuous has immense applications in non-contact printing systems such as solar cells, flexible printed circuits, RFIDs and bio applications. In this paper a laboratory manufactured nozzle has been designed for the experimental investigation of electrostatic dripping and atomization of liquid. Dripping and atomization conditions such as voltage, nozzle tip diameter, distance between counter electrode and flowrate has been indentified for the designed nozzle. Furthermore it is also demonstrated that the diameter of a generated droplet could be reduced from a significantly large size to a narrow size distribution which can be controlled by volumetric flow rate and applied voltage. This study will help in classify the conditions between different electrostatic dripping mode such as drop-on-demand formation, jet mode and finally the atomization mode based on the laboratory fabricated nozzle head.

  • PDF

Recent Advances in the Ink-Jet Printing Ceramic Tile Using Colorant Ceramic-ink (고화도 발색세라믹잉크를 이용한 잉크젯프린팅 도자타일 연구동향)

  • Kim, Jin-Ho;Noh, Hyung-Goo;Kim, Ung-Soo;Cho, Woo-Suk;Choi, Jung-Hoon;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2013
  • Over the past decade, the feasibility of using ink-jet printing for the decoration of porcelain tiles has been explored, and significant advances have been made regarding the technologies underlying printing system and materials. An ink-jet printing system for porcelain tiles has many advantages compared with a conventional printing system, including the following: (1) it is a digital process; (2) it uses non-contact printing; (3) it allows random image generation; (4) it is a highly efficient process (reduced production cost); (5) it offers massive and continuous production; and (6) it uses inorganic pigment colorants. For these reasons, ink-jet printing systems for porcelain tiles have been commercialized and are at present rapidly spreading toceramics-leading countries such as Spain, Italy, China and Japan. We also developed a proprietary system involving a piezo-electric drop-on-demand method and an ink-circulation step. The resolution of this system is greater than 360 dpi after a heat treatment and the maximum printable width is 600 mm, even when setting the printing head unit with four digital colors (cyan, magenta, yellow, and black). In addition, we systematically developed ceramic colorant-containing inks and tile-printing technology applicable to our ink-jet printing system.

A Study on the Simulation of the Resolution for Ink-Jet Printing (잉크젯 프린팅에서 해상력에 관한 컴퓨터 시뮬레이션 연구)

  • Lee, Ji-Eun;Youn, Jong-Tae;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.51-63
    • /
    • 2010
  • Ink-jet is part of the non impact printing that shooting the ink drop from the nozzle to paper. It is very silence and express good color. There are two types of printing that continuous and drop on demand. But drop on demand process is becoming the mainstream. these days, LCD, PDP is passed more than semiconductor industry. And we expect organic EL, FED as a next display. But product equipment, main component and technology have a gap between an advanced country and us nevertheless physical development. Expecially, previous process part is depended on imports. Ink-jet printing technology that there isn't complicated photo lithography process is attracted, so ink-jet printing resolution is more embossed. But there were not many of ink-jet resolution thesis but ink-jet head or nozzle. Because, to out of the ink from the nozzle is unseeable and hard to experiment. Therefore this thesis was experimented and simulated how can ink-jet printer improved resolution by flow-3d simulation package program.

A study of correction dependent on process parameters for printing on a three-dimensional surface (3차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song Min Sup;Kim Hyo Chan;Lee Sang Ho;Yang Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.181-190
    • /
    • 2006
  • In the industry, three-dimensional coloring has been needed for a realistic prototype. The Z-corporation developed a 3D printer which provides a three-dimensional colored prototype. However, the process cannot be adopted to models fabricated by other rapid prototyping processes. In addition, time and cost for manufacturing colored prototypes still remain to be improved. In this study, a new coloring process using an ink-jet head is proposed for color printing on a three-dimensional surface. Process parameters such as the angle and the distance between the ink-jet nozzle and the three-dimensional surface should be investigated through experiments. In order to minimize the distortion of a 2D image, the correction matrix according to the sloped angle is proposed and obtained by analysis of printing errors. An image on the doubly curved surface is printed so as to verify the proposed method. As a practical example, a helmet is chosen for printing images on the curved surface. The practical applicability of the correction matrix is then demonstrated by printing the character images on the surface of the helmet.