• 제목/요약/키워드: Printed model

Search Result 326, Processing Time 0.028 seconds

A study on the Mathematical Tension Model for a Non-contact Transfer of a Moving Web in R2R e-Printing Systems (롤투롤 시스템에서의 비 접촉 이송 시스템을 위한 수학적 장력 모델에 관한 연구)

  • Lee, Chang-Woo;Kim, Ho-Joon;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.894-898
    • /
    • 2009
  • In a post printing section of roll to roll printing systems, scratch problem is the major defects. The functional qualities such as conductivity, mobility could deteriorate because of the scratch defect. In general, the scratch of the printed pattern on the flexible substrate was induced from a contact between rolls and printed pattern in the post printing section. In this paper, for non-contacting transfer of a moving web, a mathematical tension model has been developed considering strain due to air floatation and the proposed mode has been validated by numerical simulation. Additionally, the correlation between floatation height and speed compensation to control the tension and register are investigated. On the basis of the proposed model, a guide line of speed control in R2R printing system is presented to guarantee the non-contact between rolls and R2R printed pattern on the flexible substrate.

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling

  • Nguyen, Huyen T.T.;Pham, Huy K.;Nguyen, Vu A.;Mai, Tung T.;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

Design of Printed Planar Antenna Suitable for Mobile Wireless Communications (이동 무선 통신을 위한 인쇄형 평면 안테나의 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose a printed planar antenna suitable for mobile wireless communications. Since the printed antenna is easy to fabricate due to simplicity, low cost, and light weight, it is widely used in communications systems. The conventional patch antenna takes too much surface area to be applied to a mobile receiver. Although the size is reduced using the printed antenna, still reasonably wide bandwidth should be considered. To overcome the disadvantage of narrow bandwidth, the substrate should be physically thick and the dielectric constant should be small. In this work, we suggest a simple form of printed planar antenna and show the optimal input impedance depending on the antenna size and operating frequency. The performance evaluation is achieved analytically for a prototype antenna model.

  • PDF

Evaluation of the marginal and internal fit of a single crown fabricated based on a three-dimensional printed model

  • Jang, Yeon;Sim, Ji-Young;Park, Jong-Kyoung;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.367-373
    • /
    • 2018
  • PURPOSE. To evaluate the fit of a crown produced based on a 3D printed model and to investigate its clinical applicability. MATERIALS AND METHODS. A master die was fabricated with epoxy. Stone dies were fabricated from conventional impressions (Conventional stone die group: CS, n=10). Digital virtual dies were fabricated by making digital impressions (Digital Virtual die group: VD, n=10). 3D data obtained from the digital impression was used to fabricate 3D printed models (DLP die group: DD, n=10, PolyJet die group: PD, n=10). A total of 40 crowns were fabricated with a milling machine, based on CS, VD, DD and PD. The inner surface of all crowns was superimposed with the master die files by the "Best-fit alignment" method using the analysis software. One-way and 2-way ANOVA were performed to identify significant differences among the groups and areas and their interactive effects (${\alpha}=.05$). Tukey's HSD was used for post-hoc analysis. RESULTS. One-way ANOVA results revealed a significantly higher RMS value in the 3D printed models (DD and PD) than in the CS and DV. The RMS values of PD were the largest among the four groups. Statistically significant differences among groups (P<.001) and between areas (P<.001) were further revealed by 2-way ANOVA. CONCLUSION. Although the fit of crowns fabricated based on the 3D printed models (DD and PD) was inferior to that of crowns prepared with CS and DV, the values of all four groups were within the clinically acceptable range (<$120{\mu}m$).

Design of flexible assembly line for printed circuit board(PCB) manufacturing of amdahl company

  • Park, Kwangtae;Adiga, Sadashiv
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.159-168
    • /
    • 1992
  • 생산라인의 line balancing이 흐름생산에 있어서 일관된 생산을 하기 위한 필수조건이다. 여러 다양한 제품을 생산하는 printed circuit board(PCB) 공장에서의 line balancing을 얻기 위해서는 mixed model line balancing절차를 설명하고자 한다.

  • PDF

3D Reconstruction of 3D Printed Medical Metal Implants (3D 출력 의료용 금속 임플란트에 대한 3D 복원)

  • Byounghun Ye;Ku-Jin Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.229-236
    • /
    • 2023
  • Since 3D printed medical implant parts usually have surface defects, it is necessary to inspect the surface after manufacturing. In order to automate the surface inspection, it is effective to 3D scan the implant and reconstruct it as a scan model such as a point cloud. When constructing a scan model, the characteristics of the shape and material of the implant must be considered because it has characteristics different from those of general 3D printed parts. In this paper, we present a method to reconstruct the 3D scan model of a 3D printed metal bone-plate that is one kind of medical implant parts. Multiple partial scan data are produced by multi-view 3D scan, and then, we reconstruct a scan model by alignment and merging of partial data. We also present the process of the scan model reconstruction through experiments.

A Study on the Controller Design of 3D Printed Robot Hand using TPU Material (TPU 소재를 이용한 3D 프린팅 로봇 손의 제어기 설계에 관한 연구)

  • Young-Rim Choi;Ye-Eun Park;Jong-Wook Kim;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.312-327
    • /
    • 2024
  • In this study, a rehabilitation 3D printed wearable device was developed by combining an assembly-type robot hand and an integral-type robot hand through fused deposition 3D printing manufacturing with various hardness TPU (Thermoplastic Polyurethane) filaments. The hardware configuration of the robot hand includes a controller designed with four motors, one small servo motor, and a circuit board. In the case of the assembly-type robot hand model, a 3D printed robot hand was assembled using samples printed with TPU of hardness 87A and 95A. It was observed that TPU with a hardness of 95A was suitable for use due to shape stability. For the integrated-type robot hand model, the external sample using TPU of hardness 95A could be modified through a cutting method, and the hardware configuration is the same as the assembly-type. The system structure of the 3D printed robot hand was improved from an individual control method to a simultaneous transmission method.Furthermore, the system architecture of an integrated 3D printed robotic hand rehabilitation device and the application of the rehabilitation device were developed.

Development of Color Inspection System of Printed Texture using Scanner (스캐너를 이용한 직물의 색상검사기 개발)

  • 조지승;정병묵;박무진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.70-75
    • /
    • 2003
  • It is very important to inspect the color of printed texture in the textile process. The standard colorimetric system used for the recognition of the color in the textile industry. It uses XYZ color system defined by CIE (Commission Internationale de 1Eclairage), but is too expensive. Therefore, in this paper, we propose a color inspection system of the printed texture using a color scanner. Because the scanner uses RGB value for color, it is necessary the mapping from RGB to XYZ. However, the mapping is not simple, and the scanner has even positional deviation because of the geometric characteristics. To transform from RGB to XYZ, we used a NN (neural network) model and also compensated the positional deviation. In real experiments, we could get fairly exact XYZ value from the proposed color inspection system in spite of using a color scanner with large measuring area.