• Title/Summary/Keyword: Printed materials

Search Result 834, Processing Time 0.027 seconds

Dispersion Stability and Mechanical Properties of ZrO2/High-temp Composite Resins by Nano- and Micro-particle Ratio for Stereolithography 3D Printing (나노 및 마이크로 입자 비율에 따른 광조형 3D 프린팅용 ZrO2/High-temp 복합 수지의 분산 안정성 및 기계적 특성)

  • Song, Se Yeon;Park, Min Soo;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2019
  • This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated $ZrO_2$ ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated $ZrO_2$ particles are observed by FE-TEM and FT-IR. The rheological properties of VTES-coated $ZrO_2/High-temp$ composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3D-printed objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated $ZrO_2$ ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.

pH Sensor Application of Printed Indium-Tin-Oxide Nanoparticle Films (Indium-Tin-Oxide 나노입자 인쇄박막의 pH sensor 응용에 대한 연구)

  • Lee, Changhan;Noh, Jaeha;An, Sangsu;Lee, Sangtae;Seo, Dongmin;Lee, Moonjin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.85-89
    • /
    • 2022
  • We investigated a pH sensor using an Indium tin oxide (ITO) nanoparticle (NP) film printed on a flexible substrate. First, the printing precision and mechanical stability of the ITO-printed film were investigated. In particular, the factors that influence the crystallinity of ITO films were studied using X-ray diffraction pattern analysis. The response of the ITO pH sensor was calibrated using a series of standard pH solutions (pH 3-11). The pH values of various specimens were measured using an ITO pH sensor, and the results were compared with those of various pH measurement methods. As a result of the experiment, the maximum error was approximately ± 0.04 pH (0.4 %) at pH 9, which indicated that the ITO pH sensor is highly suitable for pH measurement. Finally, we used the ITO pH sensor to the measure of general specimens such as solvents and beverages and compared the results in comparison with those obtained from several conventional methods.

Experimental Investigation on the Freezing Condition of Printed Circuit Heat Exchanger for Cryogenic Liquid Hydrogen Vaporizer (극저온 액체수소 기화기용 인쇄기판 열교환기의 동결 조건에 관한 실험적 연구)

  • WOOKYOUNG KIM;BOKYEM KIM;SANGHO SOHN;KONG HOON LEE;JUNGCHUL KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.240-248
    • /
    • 2024
  • The purpose of this study is to investigate the freezing phenomena in printed circuit heat exchanger (PCHE) for cryogenic liquid hydrogen vaporizer. Local freezing phenomena in hot channels should be avoided in designing PCHE for cryogenic liquid hydrogen vaporizer. Hence, the flow and thermal characteristics of PCHE is experimentally investigated to figure out the conditions under when freezing occurs. To conduct lab-scale PCHE experiment, liquid nitrogen is used as a working fluid in cold channels instead of using liquid hydrogen. Glycol water is used as a working fluid in hot channels. Based on the experimental data, ratio between mass flow rates of cold channels and that of hot channels is proposed as contour map to avoid the freezing phenomena in PCHE.

Numerical Analysis of Heat Transfer of a Printed Circuit Boards for Safety Design of Electronic Equipment at Each Design Stage (전자장비 안전설계를 위한 PCB의 설계단계별 열전달 해석)

  • 김재홍;김종일
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 1998
  • The natural convection cooling of simulated electronic chips located on a printed circuit board(PCB) has been studied by Computer Aided Engineering(CAE). In CAE, 3-dimensional finite element model of simulated electronic chip was made to accomplish heat transfer analysis at each design stage of a printed circuit boards for thermal optimization. The simulated electronic chips are installed protrudent from the plate about 3mm. The materials the plates are epoxy and aluminum. The results show that the chip with relatively high heat generation rates should not be close to each other. It is found, as well that cooling effect for the aluminum plate is superior to the epoxy plate and location of maximum temperature is significantly influenced by the structure variation of PCB. In developing PCB and electronic chips, it's recommended that CAE is very useful to estimate to the distribution of temperature.

  • PDF

Preparation and Characterization of Screen-printed Lead Zirconate Titanate Thick Films

  • Lee Sung-Gap
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2006
  • Ferroelectric PZT heterolayered thick films were fabricated by the alkoxide-based sol-gel method. PZT(Zr/Ti=60/40) paste was made and alternately screen-printed on the $Al_2O_3$ substrates. We have introduced a press-treatment to obtain a good densification of screen printed films. The porosity of the thick films was decreased with increasing the applied pressure and the thick films pressed at $0.6ton/cm^2$ showed the dense microstructure and thickness of about $76{\mu}m$. The relative dielectric constant increased with increasing the applied pressure. The remanent polarization and coercive field increased with increasing applied pressure and the values for the PZT thick films pressed at $0.6ton/cm^2$ were $16.6{\mu}C/cm^2$, 76.9 kV/cm, respectively.

Energy Transfer between Activators at Different Crystallographic Sites

  • Sohn, Kee-Sun;Lee, Sang-Jun;Lee, Bong-Hyun;Xie, Rong-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.239-242
    • /
    • 2009
  • $Sr_2Si_5N_8:Eu^{2+}$, one of the most recently developed phosphors for use in white light emitting diodes, exhibits a two-peak emission. Namely, the emission band of $Sr_2Si_5N_8:Eu^{2+}$ is deconvoluted into two Gaussian peaks irrespective of the $Eu^{2+}$ concentration. We examined the two-peak emission of $Sr_2Si_5N_8:Eu^{2+}$ by analyzing the time-resolved photoluminescence spectra. We revealed that the two-peak emission was closely associated with the energy transfer taking place between $Eu^{2+}$ activators located at two different crystallographic sites in the $Sr_2Si_5N_8$ structure. The experimental results coincided well with the rate equation model involving the crystallographic information of the host.

  • PDF

Process Optimization for Flexible Printed Circuit Board Assembly Manufacturing

  • Hong, Sang-Jeen;Kim, Hee-Yeon;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • A number of surface mount technology (SMT) process variables including land design are considered for minimizing tombstone defect in flexible printed circuit assembly in high volume manufacturing. As SMT chip components have been reduced over the past years with their weights in milligrams, the torque that once helped self-centering of chips, gears to tombstone defects. In this paper, we have investigated the correlation of the assembly process variables with respect to the tombstone defect by employing statistically designed experiment. After the statistical analysis is performed, we have setup hypotheses for the root causes of tombstone defect and derived main effects and interactions of the process parameters affecting the hypothesis. Based on the designed experiments, statistical analysis was performed to investigate significant process variable for the purpose of process control in flexible printed circuit manufacturing area. Finally, we provide beneficial suggestions for find-pitch PCB design, screen printing process, chip-mounting process, and reflow process to minimize the tombstone defects.

Screen-printed Source and Drain Electrodes for Inkjet-processed Zinc-tin-oxide Thin-film Transistor

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.271-274
    • /
    • 2011
  • Screen-printed source and drain electrodes were used for a spin-coated and inkjet-processed zinc-tin oxide (ZTO) TFTs for the first time. Source and drain were silver nanoparticles. Channel length was patterned using screen printing technology. Different silver nanoinks and process parameters were tested to find optimal source and drain contacts Relatively good electrical properties of a screen-printed inkjet-processed oxide TFT were obtained as follows; a mobility of 1.20 $cm^2$/Vs, an on-off current ratio of $10^6$, a Vth of 5.4 V and a subthreshold swing of 1.5 V/dec.

3D Printing Characteristics of Automotive Hub using 3D Scanner and Reverse Engineering (3D 스캐너와 역설계를 활용한 자동차용 허브의 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.104-109
    • /
    • 2019
  • Reverse engineering techniques using 3D scanners and 3D printing technologies are being used in various industries. In this paper, the three-dimensional model is designed for automotive hub parts through 3D scanning and reverse engineering, and the design of hub parts is intended to be printed on FDM-style 3D printers to measure and analyze the dimensions of hub parts designed for reverse design and 3D printed hub parts. Experimental result have shown that the dimensions of 3D printed hub parts are small compared to those of the reverse-engineered dimensions, which are due to the shrinkage of filament materials in 3D printing.