• Title/Summary/Keyword: Principal component method

Search Result 982, Processing Time 0.024 seconds

Principal Component Transformation of the Satellite Image Data and Principal-Components-Based Image Classification (위성 영상데이터의 주성분변환 및 주성분 기반 영상분류)

  • Seo, Yong-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.24-33
    • /
    • 2004
  • Advances in remote sensing technologies are resulting in the rapid increase of the number of spectral channels, and thus, growing data volumes. This creates a need for developing faster techniques for processing such data. One application in which such fast processing is needed is the dimension reduction of the multispectral data. Principal component transformation is perhaps the mostpopular dimension reduction technique for multispectral data. In this paper, we discussed the processing procedures of principal component transformation. And we presented and discussed the results of the principal component transformation of the multispectral data. Moreover principal components image data are classified by the Maximum Likelihood method and Multilayer Perceptron method. In addition, the performances of two classification methods and data reduction effects are evaluated and analyzed based on the experimental results.

  • PDF

ECG based Personal Authentication using Principal Component Analysis (주성분 분석기법을 이용한 심전도 기반 개인인증)

  • Cho, Ju-Hee;Cho, Byeong-Jun;Lee, Dae-Jong;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.258-262
    • /
    • 2017
  • The PCA(Principal Component Analysis) algorithm is widely used as a technique of expressing the eigenvectors of the covariance matrix that best represents the characteristics of the data and reducing the high dimensional vector to a low dimensional vector. In this paper, we have developed a personal authentication method based on ECG using principal component analysis. The proposed method showed excellent recognition performance of 98.2 [%] when it was experimented using electrocardiogram data obtained at weekly intervals. Therefore, it can be seen that it is useful for personal authentication by reducing the dimension without changing the information on the variability and the correlation set variable existing in the electrocardiogram data by using the principal component analysis technique.

A Study on CPA Performance Enhancement using the PCA (주성분 분석 기반의 CPA 성능 향상 연구)

  • Baek, Sang-Su;Jang, Seung-Kyu;Park, Aesun;Han, Dong-Guk;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.1013-1022
    • /
    • 2014
  • Correlation Power Analysis (CPA) is a type of Side-Channel Analysis (SCA) that extracts the secret key using the correlation coefficient both side-channel information leakage by cryptography device and intermediate value of algorithms. Attack performance of the CPA is affected by noise and temporal synchronization of power consumption leaked. In the recent years, various researches about the signal processing have been presented to improve the performance of power analysis. Among these signal processing techniques, compression techniques of the signal based on Principal Component Analysis (PCA) has been presented. Selection of the principal components is an important issue in signal compression based on PCA. Because selection of the principal component will affect the performance of the analysis. In this paper, we present a method of selecting the principal component by using the correlation of the principal components and the power consumption is high and a CPA technique based on the principal component that utilizes the feature that the principal component has different. Also, we prove the performance of our method by carrying out the experiment.

On principal component analysis for interval-valued data (구간형 자료의 주성분 분석에 관한 연구)

  • Choi, Soojin;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2020
  • Interval-valued data, one type of symbolic data, are observed in the form of intervals rather than single values. Each interval-valued observation has an internal variation. Principal component analysis reduces the dimension of data by maximizing the variance of data. Therefore, the principal component analysis of the interval-valued data should account for the variance between observations as well as the variation within the observed intervals. In this paper, three principal component analysis methods for interval-valued data are summarized. In addition, a new method using a truncated normal distribution has been proposed instead of a uniform distribution in the conventional quantile method, because we believe think there is more information near the center point of the interval. Each method is compared using simulations and the relevant data set from the OECD. In the case of the quantile method, we draw a scatter plot of the principal component, and then identify the position and distribution of the quantiles by the arrow line representation method.

Assessment and Classification of Korean Local Corn Lines by the Application of Principal Component Analysis (I) (Principal Component Analysis Method에 의(依)한 한국재래종(韓國在來種) 옥수수의 해석(解析) 및 계통분류(系統分類)(I))

  • Lee, In Sup;Choe, Bong Ho
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.139-151
    • /
    • 1981
  • To obtain breeding materials 57 Korean local corn lines collected were assessed and classified by the application of principal component analysis. The results obtained were as follows. 1. In the result of principal component analysis for 27 characters, 67.1% and 88.6% of total variation could be appreciated by the first four and fir st ten principal component respectively. 2. According to the value of characters and principal components, contribution of characters to principal components were very variable. 3. Biological meaning of the principal component and plant type corresponded to the each principal component were explained clear by the correlation coefficients between principal components and characters. 4. 57 lines were classified into 4 lineal groups by the taxonomic distances.

  • PDF

Visible and NIR Image Synthesis Using Laplacian Pyramid and Principal Component Analysis (라플라시안 피라미드와 주성분 분석을 이용한 가시광과 적외선 영상 합성)

  • Son, Dong-Min;Kwon, Hyuk-Ju;Lee, Sung-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • This study proposes a method of blending visible and near infrared images to enhance edge details and local contrast. The proposed method consists of radiance map generation and color compensation. The radiance map is produced by a Laplacian pyramid and a soft mixing method based on principal component analysis. The color compensation method uses the ratio between the composed radiance map and the luminance channel of a visible image to preserve the visible image chrominance. The proposed method has better edge details compared to a conventional visible and NIR image blending method.

Blind Source Separation via Principal Component Analysis

  • Choi, Seung-Jin
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Various methods for blind source separation (BSS) are based on independent component analysis (ICA) which can be viewed as a nonlinear extension of principal component analysis (PCA). Most existing ICA methods require certain nonlinear functions (which leads to higher-order statistics) depending on the probability distributions of sources, whereas PCA is a linear learning method based on second-order statistics. In this paper we show that the PCA can be applied to the task of BBS, provided that source are spatially uncorrelated but temporally correlated. Since the resulting method is based on only second-order statistics, it avoids the nonlinear function and is able to separate mixtures of several colored Gaussian sources, in contrast to the conventional ICA methods.

  • PDF

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

Robust Design for Multiple Quality Characteristics using Principal Component Analysis

  • Kwon, Yong-Man;Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.545-551
    • /
    • 2003
  • Robust design is to identify appropriate settings of control factors that make the system's performance robust to changes in the noise factors that represent the source of variation. In this paper we propose how to simultaneously optimize multiple quality characteristics using the principal component analysis of multivariate statistical analysis. An example is illustrated to compare it with already proposed method.

  • PDF

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.