• Title/Summary/Keyword: Principal Component Factor

Search Result 368, Processing Time 0.022 seconds

A Comparative Study on Factor Recovery of Principal Component Analysis and Common Factor Analysis (주성분분석과 공통요인분석에 대한 비교연구: 요인구조 복원 관점에서)

  • Jung, Sunho;Seo, Sangyun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.933-942
    • /
    • 2013
  • Common factor analysis and principal component analysis represent two technically distinctive approaches to exploratory factor analysis. Much of the psychometric literature recommends the use of common factor analysis instead of principal component analysis. Nonetheless, factor analysts use principal component analysis more frequently because they believe that principal component analysis could yield (relatively) less accurate estimates of factor loadings compared to common factor analysis but most often produce similar pattern of factor loadings, leading to essentially the same factor interpretations. A simulation study is conducted to evaluate the relative performance of these two approaches in terms of factor pattern recovery under different experimental conditions of sample size, overdetermination, and communality.The results show that principal component analysis performs better in factor recovery with small sample sizes (below 200). It was further shown that this tendency is more prominent when there are a small number of variables per factor. The present results are of practical use for factor analysts in the field of marketing and the social sciences.

Resistant Principal Factor Analysis

  • Park, Youg-Seok;Byun, Ho-Seon
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.67-80
    • /
    • 1996
  • Factor analysis is a multivariate technique for describing the in-terrelationship among many variables in terms of a few underlying but unobservable random variables called factors. There are various approaches for this factor analysis. In particular, principal factor analysis is one of the most popular methods. This follows the mathematical algorithm of the principal component analysis based on the singular value decomposition. But it is known that the singular value decomposition is not resistant, i.e., it is very sensitive to small changes in the input data. In this article, using the resistant singular value decomposition of Choi and Huh (1994), we derive a resistant principal factor analysis relatively little influenced by notable observations.

  • PDF

Evaluation of Water Quality using Principal Component Analysis in the Nakdong Rivev Estuary (주성분 분석법을 이용한 낙동강 하구 해역의 수질 평가)

  • Sin, Seong-Gyo;Park, Cheong-Gil;Song, Gyo-Uk
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.171-176
    • /
    • 1998
  • This study was conducted to evaluate water quality utilizing principal component analysis in the Nakdong River Estuary. From the results of analysis, water quality in the Nakdong River Estuary could be explained up to 65.3 Percente by three factors which were Included In river loadlnwastes from the Nakdong River and rainfalls : 39.1%1, sediment resuspension(13.7BS) and metabolism(12.5%). In the eastern part of estuary In flowing the Nakdong River, river loading factor score(factor 1 Pas higher than that In western part. Sediment resuspension factor score(factor 2) was high in shallow water, while metabolism factor score(factor 3) was high in deeper water. For seasonal variations of factors score, factor 1 was h19h- 1y related to rainfall season.

  • PDF

County-Based Vulnerability Evaluation to Agricultural Drought Using Principal Component Analysis - The case of Gyeonggi-do - (주성분 분석법을 이용한 시군단위별 농업가뭄에 대한 취약성 분석에 관한 연구 - 경기도를 중심으로 -)

  • Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.1 s.30
    • /
    • pp.37-48
    • /
    • 2006
  • The objectives of this study were to develop an evaluation method of regional vulnerability to agricultural drought and to classify the vulnerability patterns. In order to test the method, 24 city or county areas of Gyeonggi-do were chose. First, statistic data and digital maps referred for agricultural drought were defined, and the input data of 31 items were set up from 5 categories: land use factor, water resource factor, climate factor, topographic and soil factor, and agricultural production foundation factor. Second, for simplification of the factors, principal component analysis was carried out, and eventually 4 principal components which explain about 80.8% of total variance were extracted. Each of the principal components was explained into the vulnerability components of scale factor, geographical factor, weather factor and agricultural production foundation factor. Next, DVIP (Drought Vulnerability Index for Paddy), was calculated using factor scores from principal components. Last, by means of statistical cluster analysis on the DVIP, the study area was classified as 5 patterns from A to E. The cluster A corresponds to the area where the agricultural industry is insignificant and the agricultural foundation is little equipped, and the cluster B includes typical agricultural areas where the cultivation areas are large but irrigation facilities are still insufficient. As for the cluster C, the corresponding areas are vulnerable to the climate change, and the D cluster applies to the area with extensive forests and high elevation farmlands. The last cluster I indicates the areas where the farmlands are small but most of them are irrigated as much.

Principal Component Analysis on Marine Casualties Occurred at Korean Littoral Sea in Recent 5 Years (최근 5년간 국내 연근해에서 발생한 해양사고에 대한 주성분분석)

  • KIM, Yeong-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.465-472
    • /
    • 2016
  • Principal Component Analysis (PCA) is useful statistical technique for finding patterns in data, and expressing the data in such a way as to highlight their similarities and differences. In this paper, 1417 marine casualties occurred in Korean littoral sea in recent 5 years, were examined by the PCA. The main results obtained were as follows : 1. Most of marine casualties resulted from the human factors such as careless operation and insufficient engine maintenance. 2. Collision and standing mainly resulted from steering room-related human factors such as careless guard, inadequate ship-handling, however engine damage and fire explosion mainly resulted from engine room-related human factor such as bad handling of engine system. 3. No. 1 principal component represents accident frequency, No. 2 principal component represents the cause and No. 3 principal component represents the pattern of marine casualties, respectively.

A Study on the Factor Analysis of the Encounter Data in the Maritime Traffic Environment (해상교통 조우데이터 요인분석에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • The vessel encounter data collected from the vessel trajectories in the maritime traffic situation is possible to analyze vessel collision and near-collision risk using statistical method. In this study, analyzing variables extracted from the vessel encounter data using factor analysis, we determine main factors effecting vessel collision risk from vessel encounter data. In order to calculate each factor, it used principal component analysis for factor analysis after normalization and standardization of vessel encounter variables. As a result of the factor analysis, main effect factors are summarized into the vessel approach factor and collision avoidance variance factor.

A Study on the Shapes of the Neck and the Shoulder in Dressmaking; young wonen age group (의복원형설계를 위한 성인여성 두.견부의 형태분류 -20대 여성을 중심으로-)

  • 김희숙
    • Journal of the Korean Home Economics Association
    • /
    • v.36 no.12
    • /
    • pp.43-54
    • /
    • 1998
  • From the viewpoint of clothing construction, it is necessary to grasp exactly the shapes of the neck and the shouder, such as the line of the neck base, the neck gradient, the shoulder gradient, the shape of the scapular, and the shape of the breast. In this report, factor analysis was applied to 39 items of neck & shoulder level measurements, including stature, weight, but grith, waist girth, to demonstrate the most relevant measurements for collar and bodice pattern designing, and to classify the neck and shoulder level shapes. The subjects investigated were 126 women of the age 20-29. The main results are follows : 1. For factors of body form were extracted by the factor analysis. The 1st principal component can be interpreted as "size" component, the 2nd-3th principal component is "shape" component relating to neck and shoulder level, and the 4th principal component is "shoulder shape" component. 2. With regard to factor loadings, we were able to extract the most relevant measurements for collar and bodice pattern designing. M16, M22, S26, S30, S34, S35, S36, C37, C38, C39.

  • PDF

Demension reduction for high-dimensional data via mixtures of common factor analyzers-an application to tumor classification

  • Baek, Jang-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.751-759
    • /
    • 2008
  • Mixtures of factor analyzers(MFA) is useful to model the distribution of high-dimensional data on much lower dimensional space where the number of observations is very large relative to their dimension. Mixtures of common factor analyzers(MCFA) can reduce further the number of parameters in the specification of the component covariance matrices as the number of classes is not small. Moreover, the factor scores of MCFA can be displayed in low-dimensional space to distinguish the groups. We propose the factor scores of MCFA as new low-dimensional features for classification of high-dimensional data. Compared with the conventional dimension reduction methods such as principal component analysis(PCA) and canonical covariates(CV), the proposed factor score was shown to have higher correct classification rates for three real data sets when it was used in parametric and nonparametric classifiers.

  • PDF

A STUDY ON PREDICTION INTERVALS, FACTOR ANALYSIS MODELS AND HIGH-DIMENSIONAL EMPIRICAL LINEAR PREDICTION

  • Jee, Eun-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.377-386
    • /
    • 2004
  • A technique that provides prediction intervals based on a model called an empirical linear model is discussed. The technique, high-dimensional empirical linear prediction (HELP), involves principal component analysis, factor analysis and model selection. HELP can be viewed as a technique that provides prediction (and confidence) intervals based on a factor analysis models do not typically have justifiable theory due to nonidentifiability, we show that the intervals are justifiable asymptotically.

Evaluation of Water Quality Using Multivariate Statistic Analysis in Busan Coastal Area

  • Kim, Sang-Soo;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.531-542
    • /
    • 2004
  • Principal component analysis and cluster analysis were conducted to comprehensively evaluate the water quality of Busan coastal area with the data collected seasonally by the analysis of surface water at 10 stations from 1997 to 2003. We noted that the first principal component was regarded as a factor related with the input of nutrient-rich fresh water and the second principal component as meteorological characteristics. Also we obtained that water qualities of station 4 and 9 were different from those of other stations in Busan coastal area.

  • PDF