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Abstract

Factor analysis is a multivariate technique for describing the in-
terrelationship among many variables in terms of a few underlying
but unobservable random variables called factors. There are various
approaches for this factor analysis. In particular, principal factor anal-
ysis is one of the most popular methods. This follows the mathematical
algorithm of the principal component analysis based on the singular
value decomposition. But it is known that the singular value decom-
position is not resistant, i.e., it is very sensitive to small changes in the
input data. In this article, using the resistant singular value decom-
position of Choi and Huh (1994), we derive a resistant principal factor
analysis relatively little influenced by notable observations.
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1. INTRODUCTION

Factor analysis is a multivariate technique for describing the interrelation-
ship among many variables in terms of a few underlying but unobservable
random variables called factors.

The origin of factor analysis lies in the early twentieth-century attempts
of Charles Spearman. Much of the early development of factor analysis was
done by psychologists seeking a better understanding of the dimensions of
human intelligence (Jobson, 1992, p. 388).

For this factor analysis, there are various alternative approaches. In par-
ticular, principal factor analysis is one of the most popular methods. The
algorithm for this approach is mathematically equivalent to that of princi-
pal component analysis. It is well known that the main spirit of principal
component analysis is dimension reduction. In fact, this can be done by the
eigensystem or singular value decomposition. And there are reasons for pre-
ferring the use of the singular value decomposition which is one of the most
useful methods in the areas of matrix computation (Choi and Huh, 1994).

In this paper, firstly in Section 2, we provide the principal factor analysis
using the singular value decomposition. And we give the geometric interpre-
tations of factor loadings plot. This plot geometrically gives the important
interpretations of factor analysis. However Choi and Huh (1994) point out
that the singular value decomposition of the data matrix is not resistant, i.e.,
it is very sensitive to small changes in the input data. Therefore, if there
exist outliers in data matrix, the principal factor analysis using the singular
value decomposition does not give the desirable results. And they developed
the resistant singular value decomposition.

In Section 3, we provide a resistant version of principal factor analysis
based on the resistant singular value decomposition. And we call this a resis-
tant principal factor analysis. In addition, as the analogy with Section 2, we
consider the geometric interpretations of the resistant factor loadings plot.

We give two numerical illustrations and discussions in Section 4. Finally,
Section 5 gives the concluding remarks.

2. PRINCIPAL FACTOR ANALYSIS

2.1. The classical principal factor analysis using the singular value
decomposition
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Firstly, we review the factor analysis model. Let x' = (z;,...,z,) be a
p x 1 random vector of p variables with mean vector ' = (p1,...,4,) and

p X p covariance matrix ¥. Generally, the m(< p)-factor analysis model for
x can be written in the matrix form

x = u+ Lf + ¢ (2.1)
where L is the p x m matrix of factor loadings l;, j=1,...,p; k=1,...,m,
f is the m x 1 vector of linearly independent common factors f,,k =1,...,m
and ¢ is the p x 1 vector of unique or specific factors ¢;,5 = 1,...,p.

The common factors are assumed to have mean 0 and variance 1. The
specific factors are assumed to have mean 0 and specific variance v¢;, j =
1,...,p. In addition, it is assumed that all of the common factors are uncor-
related with the specific factors.

Given these assumptions, the covariance matrix ¥ can be given by

Y = LL' + ¥ (2.2)

where E[(x - p)(x — p)'] = £, Elee] = Uand ¥ = diag(¢y,...,9¥,)
is a p x p specific variance matrix with diagonal elements ¢;, j = 1,...,p.
Generally, the equation (2.2) is called the common factor decomposition of ¥
(Tanaka, 1989).

In factor analysis model of (2.1), the general interesting problem is how
to estimate L and ¥ (and hence ¥ = LL’ + ¥) from a p-variate sample
variance-covariance matrix S. Johnson and Wichern (1992, pp. 403-406)
provided the algorithm for the classical principal factor analysis based on the
eigensystem of S. As noted in Section 1, the singular value decomposition
is the more useful than the eigensystem in the areas of matrix computation.
Now we provide the classical principal factor analysis using the singular value
decomposition. _

Consider the n x p variables-centered data matrix X = (z;; — z ;), where
z; = yiqzg/nandi = 1,...,n;5 = 1,...,p. Naturally, it leads to a
p-variate sample variance-covariance matrix

S =X'X/n. (2.3)
And the singular value decomposition of matrix X with rank r can be written

i = UD)\VI = Z;zl)\kukvk/ (24)
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where U = (uy,...,u.)and V = (vq,...,V;) are n X r, p X r matrices
with orthogonal columns u, and v, k& = 1,...,r, respectively and D, =
diag(Xg, ..., A.) with singular values Ay > --- > A..

Now as the analogous pattern with algorithm of Johnson and Wichern
(1992, pp. 403-406), we provide an algorithm for the estimation of L and ¥
using the singular value decomposition of (2.4) as

STEP 1: We obtain the largest m(< r < p) singular values, Ay > --- 2 An
and the corresponding right singular vectors vy, ..., Vn.

STEP 2: We form a p X m matriz of estimated factor loadings i(m) as
i(m) = n‘l/z()\lvl, ey Amvm) = (Tl, e ,Ip)’

where i’- =n"Y2(M\vi1, .y Am¥jm), 3= 1,...,D.

STEP 3: We take the estimated .speczﬁc variances provided by the diagonal
elements of the matrix S — L(m)L(m), 80

lil :dz'ag('(/jl, ;J)p)

where 1,2]- = 8j; —Iﬁj, s;; is the j" diagonal element of S in (2.3) and
iﬁ, is usually called the communality of the j** variable, j = 1,...,p.

2.2 Geometric interpretations of the factor loadings plot

Now we consider the geometric interpretations of factor loadings plot. In
fact, in STEP 2 of an algorithm for the classical principal factor analysis using
the singular value decomposition, the rows l’ (j =1,...,p) of L(m) give the
coordinates of this factor loadings plot. Slnce L(m) is algebraically equivalent
to H of k-plot (Choi, 1995), we easily show that its geometric interpretations
can be applied to those of the factor loadings plot.

Therefore the geometric interpretations of the factor loadings plot are as
follows:

Sk = I;ik,
112,

rie 2 cos(f).

.
.
!
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where "~” denotes ”approximation”, s;, is the sample covariance between
the j** and the k** variables, s;; is the sample variance of the j** variable and
is approximated by the squared length of L and r;, is the correlation between
the j** and the k** variables and 0 is the angle between the rows I; and 1,.

Finally, we need a measure for the goodness of approximation of the factor
loadings plot. For appreciating the goodness of approximation, there are a
few heuristic methods (Johnson and Wichern, 1992, p. 406; Jobson, 1992,
pp. 394-395).

Here as the analogous tool with Choi (1995), we use a measure for good-
ness of approximation

pimy = 1= IS = Limy Ly I%/1SI
= N/ DM (2.5)
k=1 k=1

In addition, we consider the residual matrix

S — (Lim) L) + ®) (2.6)

resulting from the approximation of S. Generally, the diagonal elements shall
be zero. And if the off-diagonal elements are small, we may subjectively take
the optimal m-factor analysis model.

3. RESISTANT PRINCIPAL FACTOR ANALYSIS

3.1. The resistant principal factor analysis using the resistant
singular value decomposition

In Section 2, we provided the principal factor analysis using the singular
value decomposition. However Choi and Huh (1994) point out that the sin-
gular value decomposition of the n x p variables-centered data matrix X is
not resistant. Therefore if there exist notable observations in data matrix,
classical principal factor analysis using the singular value decomposition does
not give desirable results.

Choi and Huh (1994, Theorem) provide the resistant singular value decom-
position of an n x p data matrix X" of rank r centered at a robust location
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estimate. Calculation of the resistant singular value decomposition can be
done using the iterative procedure with Andrew’s ¥(-) function given by

| esin(t/c), for 0<t <enm
v(t) = { 0, for t > enm

where c is determined by (c7)? = X3 g5(,—m)> X0.95(,—m) IS 99 percentile point
of x? distribution with p — m degrees of freedom and m is the number of
common factors.

We note that the resistant singular value decomposition of X* can be
written as

X' =UD,. V' - (3.1)

where U is an n x r matrix such that UD,U=1, Visapx r matrix of
eigenvectors of X*'D, X" such that V'V = I. and D,. = diag(A\;",...,A.")
with the kt" eigenvalue A2 of XD X

In fact, D, = diag(wi,...,wn) is an n x n diagonal matrix with the
diagonal elements w; = ¢(|| X} — %} || /o)/(| X = X; || /&), i =1,...,n,
Here, X; denotes the i** row of X* and can be viewed as n points in a p-
dimensional space R?. And let X} in a subspace of dimension m(1 < m < p)
of R? be the nearest point of an arbitrary point X; in R?. We use the median
scale estimator as ¢ = [med;(|X; — X} |1)/X}s0-m))> & = 1,...ym,
where x§ 50(,- ) i8 50 percentile point of x? distribution with p — m degrees
of freedom. For more details, see Choi and Huh (1994).

Thus we obtain the weighted sample variance-covariance matrix from the
resistant singular value decomposition of (3.1)

n'S" = X'D, X" (3.2)

where n* = Y" ,w; = 1,D,1,. Of course, the algorithm based on the
eigensystem can be applied to S* in (3.2).

However we provide an algorithm for the resistant estimation of L and ¥
using the resistant singular value decomposition (3.1) as a strict analogy with
an algorithm proposed in Subsection 2.1. This proceeds as follows.

STEP 1: We obtain the largest m(< r < p) resistant singular values, A} =
.-+ > A% and the corresponding resistant right singular vectors vy, ..., Vp.
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STEP 2: We form a p x m matriz of estimated resistant factor loadings izm)
as ) ) )
Limy =0 2N v, A V) = (0. T

where 13’ = VA1, e AL U )y = 1y, D

STEP 3: We take the estimaled resistant specific variances provided by the
diagonal elements of the matriz 8* — Ly, Li,,,, so

o = dz'ag(d;;‘, ,1,5;)
where 117;‘ =s}; —T}"T;, s3; is the j** diagonal element of §* in (3.2) and
i;’i; is called the resistant communality of the j** variable, j = 1,...,p.

3.2 Geometric interpretations of the resistant factor loadings plot

Now consider the geometric interpretations of the resistant factor loadings
plot.

As the analogy with Subsection 2.2, this plot is given by the rows 1"; (=
1,...,p) of izm) in STEP 2 of an algorithm for the resistant principal factor
analysis. And the geometric interpretations of the resistant factor loadings
plot are as follows:

s, = DT,

s;; = G,

riy = cos(6).
Therefore we note that the geometric interpretations of the factor loadings
plot discussed in Subsection 2.2 also can be applied to the resistant factor
loadings plot.

Finally, with using S* and I:Em) instead of S and i(m) in (2.6), we use a
measure for goodness of resistant approximation

me) = 1-|8 - f‘zm)LEm)llz/"S'”2
= Y NN (3.3)
k=1 k=1
Also we consider the residual matrix

S" — (LimLim) + ) (3.4)
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resulting from the approximation of S*. As noted in Subsection 2.2, if the
off-diagonal elements are small, we may take the optimal resistant m-factor
analysis model.

4. NUMERICAL ILLUSTRATIONS

Example 1 : The preferences data is the scores of eighteen students on
their preferences for the following subjects : Mathematics, Physics, English,
Natural Sciences, Foreign Language and History (Jambu, 1991, Table A.5, p.
443).

The 2-dimensional factor loadings plot is given in Fig. 1 with goodness
of approximation 99.73%. We note that PHY (physics) and NSC(natural sci-
ences) have a similar characteristic. So, their correlation is high and thus the
angle among them must be small by the geometric interpretations of factor
loadings plot given in Subsection 2.2. Also since FOR(foreign language) and
HIS(history) are similar in characteristic, we expect that the angle among
them becomes small. But these interpretations are not clear in Fig. 1.

Now consider the resistant version of principal factor analysis. As noted
in Subsection 3.1, we use the Andrew’s ¢ (-) function with ¢=0.98, where ¢ is
determined by (cr)? = x§ ¢5(4)- And we use 1.83 for the median scale estimate.

The final weights used in computing resistant singular value decomposition
are in the diagonal matrix

D, = diag(0.998 0.998 0.000 1.000 0.998 0.000
0.000 0.000 0.998 0.000 0.000 0.000
0.992 0.995 0.188 0.992 0.992 0.000).

The 2-dimensional factor loadings plot for resistant principal factor anal-
ysis is shown in Fig. 2 with goodness of approximation 99.99%. By reducing
the influence of the notable observations, Fig. 2 gives somewhat lucid inter-
pretations of principal factor analysis. That is, the angle among FOR (foreign
language) and HIS(history) is much smaller than that of Fig. 1. But the
patterns of PHY (physics) and NSC(natural science) are not changed. We
note that half the factor loadings are positive and half the factor loadings are
negative on the first factor. A factor with this pattern of the factor loadings
is called a bipolar factor (Johnson and Wichern, 1992, pp. 420-422).

Table 1 shows the estimated factor loadings, specific variances and cu-
mulative proportion of total variance for the classical and resistant principal
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factor analyses. We note that specific variances are the portion of variances
of each variable not explained by the first two common factors. In such a
view, the resistant principal factor analysis gives much better results than

those in classical principal factor analysis.

That is, specific variances are

small for the resistant principal factor analysis. Also note that cumulative
proportion of total variance explained by the first two common factors is large
for the resistant principal factor analysis. Thus we may call the first factor a
”science-nonscience” factor.

75

Fig.

1 Classical factor loadings plot Fig. 2 Resistant factor loadings plot

for the preferences data



76 Yong-Seok Choi and Ho-Seon Byun

Table 1. Estimated factor loadings, specific variances
and cumulative proportion of total variance given
by classical and resistant methods

Classical Resistant
Variables l;; Uy L P!
MAT 0.83 -1.31{0.02| 1.08 -0.43|0.00
PHY 1.61 043]0.12] 0.60 0.67|0.00
ENG -0.66 1.32]0.03 |-1.08 0.43 ] 0.00
NSC 0.76 0.35]0.28 ] 0.19 0.450.00
FOR -1.26 -0.57 [ 0.09 | -0.40 -0.56 | 0.00
HIS -1.27 -0.22 [ 0.09 | -0.40 -0.56 | 0.00
Cumulative proportion | 0.61  0.95 0.65 0.99

Finally, we compare the residual matrices (2.6) and (3.4) as noted in
Subsection 2.2 and Subsection 3.2, respectively. Note that the elements of
the residual matrix in resistant principal factor analysis are much smaller
than those of the residual matrix in classical principal factor analysis. The

residual matrices are as follows :

0

Example 2: The census-tract data (Johnson and Wichern, 1992, Table 8.2,
p. 392) consists of fourteen tract informations on five socio-economic vari-

ables.

—-0.01 0.02

0 0.02
0

—0.02
-0.17
—-0.05

0

-0.02 0.00
0.04 -0.01
0.01 -0.02

—-0.05 0.01

0 -0.08
0

0 0.00 0.00 0.00 0.00 0.00
0 0.00 0.00 0.00 0.00
0 0.00 0.00 0.00

0 0.00 0.00

0 0.00
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With goodness of approximation 99.60%, the 2-dimensional factor load-
ings plot is shown in Fig. 3. Since MSY (median school year) and MVH (median
value home) have a similar pattern, we expect that they can be described as
the same factor more clearly. Also POP(total population), TOE(total em-
ployment) and HSE(health services employment) have the same characteristic
and so they must be described as the same factor more naturally. But these
interpretations are not clear in Fig. 3.

Therefore, we consider the resistant principal factor analysis. As defined
in Subsection 3.1, we use the Andrew’s v (-) function with ¢=0.89, where c is
determined by (cm)? = x{ g5(3)- And we use 1.54 for the median scale estimate.

We have the diagonal matrix used in computing the resistant singular
value decomposition

D, = diag(0.000 0.000 0.905 0.427 0.756 0.808 1.000
0.000 0.907 0.885 0.772 0.000 0.000 0.000).

Now by reducing the influence of the notable observations, we obtain
the 2-dimensional factor loadings plot in Fig. 4 with goodness of resistant
approximation 99.99%. We note that the resistant principal factor loadings
plot gives the more sufficient results. That is, the angle between MSY (median
school year) and MVH(median value home) becomes small. So their patterns
being described as factor 2 are more natural than those in Fig. 3. Also with
respect to the geometric interpretations in Subsection 3.2, POP(total pop-
ulation), TOE(total employment) and HSE(health services employment)can
be more clearly described as factor 1.

Table 2 shows the estimated factor loadings, specific variances and cu-
mulative proportion of total variance for the classical and resistant principal
factor analyses. We note that specific variances are smaller for the resistant
principal factor analysis. And cumulative proportion of total variance ex-
plained by the first two common factors is large for the resistant principal
factor analysis. Therefore, we note that resistant principal factor analysis
gives the more satisfactory results.

Finally, as in Example 1, we can compare both methods(classical and
resistant principal factor analyses) by residual matrices. The results show
that the elements of the residual matrix in resistant principal factor analysis
are much smaller than those in the classical principal factor analysis.
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Table 2. Estimated factor loadings, specific variances
and cumulative proportion of total variance given
by classical and resistant methods

Classical Resistant
Variables L ¥i b ¥
POP 1.98 0.09|0.06 {122 0.11]0.01
MSY 0.78 0.98 | 0.07 | 0.41 0.65 | 0.00
TOE 0.85 -0.11 | 0.01 | 0.57 -0.01 { 0.00
HSE 1.08 -0.7510.10 | 1.00 -0.42 | 0.01
MVH -0.14 0.34 [0.34{0.08 0.17/0.01
Cumulative proportion | 0.74 0.93 0.82 0.99
7 -
i My N
- MSY
MV H 2
B — s V i pop
AR =, g IO
] IY:
HSE 1
E - | T B 4“,

Factor 1

Fig. 3 Classical factor loadings plot Fig. 4 Resistant factor loadings plot

for the census-tract data
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The residual matrices are as follows:

0 -0.06 000 -0.07 0.01
0 -0.01 0.06 -0.06

S — (LL' + 0) = 0 —0.01 0.01
0 007
0

0 —0.01 0.00 —0.01 0.00
0 0.00 0.00 0.00

L'+ 0 = 0 0.00 0.00
0 0.00

0

And in general, we note that since the data in this example involve mea-
surements on different scales, they neeed to be pre-standardized.

5. CONCLUDING REMARKS

We provide a resistant version of principal factor analysis using the resis-
tant singular value decomposition. We call this a resistant principal factor
analysis. This approach seems to be more desirable with respect to the ge-
ometric interpretations of factor analysis, residual matrix and goodness of
approximation.

In this paper, we limit ourselves to reducing the influence of outliers and
obtaining the resistant version of principal factor analysis. Our goal is not
to detect outliers in factor analysis. Finally, Johnson and Wichern (1992,
pp, 409-411) discussed a modification of the principal factor analysis. This
approach deserves a good further research area.
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