• 제목/요약/키워드: Principal Component Analysis (PCA) Algorithm

검색결과 262건 처리시간 0.026초

방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구 (A Study on Face Recognition Using Diretional Face Shape and SOFM)

  • 김승재;이정재
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.109-116
    • /
    • 2019
  • 본 논문은 얼굴 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 얼굴 형상을 입력정보로 사용하여 전처리 과정을 거쳐 얼굴 영역만을 분할한 후 자기 조직화 특징 지도(SOFM) 알고리즘을 이용하여 얼굴 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 얼굴 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 얼굴 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.

기하학 정보를 이용한 3차원 모델 검색 (3D Model Retrieval Using Geometric Information)

  • 이기호;김낙우;김태용;최종수
    • 한국통신학회논문지
    • /
    • 제30권10C호
    • /
    • pp.1007-1016
    • /
    • 2005
  • 본 논문은 3차원 모델의 모양 기반 검색을 하기 위한 모델의 특징을 추출하는 방법을 제시한다. 3차원 모델의 특징 기술자는 모델에 대한 위치, 회전, 크기 변환에서 그 특징이 불변해야 하기 때문에, 모델을 정규 좌표계로 표시하기 위한 선(先)처리 작업이 필요하다. 우리는 선처리 작업을 위해서 주성분 분석 방법을 사용하였으며, 이 방법은 최소 경계 상자와 외접구의 생성을 위해서도 이용되었다. 제안한 알고리즘은 다음과 같다. 반지름 1인 외접구를 만들고, 구의 중심에 3차원 모델을 위치시킨 후, 반지름이 다른 동심구($r_i=i/n,\;i=1,2,{\ldots},n$)를 생성하고, 이 동심구들과 모델이 접하는 면을 구한 다음 그 면에 대한 곡률을 계산한다. 여기서 구한 곡률을 3차원 모델의 특징 기술자로 사용하게 된다. 실험 결과는 타 알고리즘에 비해 제안하는 방법이 상대적으로 적은 빈(bin) 수를 가졌음에도 불구하고 ANMRR 평가 함수에 의해 최소 0.1에서 0.6 이상의 성능 개선 효과가 나타나고 있음을 보여 준다. 본 논문은 색인 기법으로 $R{^*}-tree$를 사용하였다.

머신러닝 기반 금속외관 결함 검출 비교 분석 (Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection)

  • 이세훈;강성환;신요섭;최오규;김시종;강재모
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.834-841
    • /
    • 2022
  • 최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.

FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링 (Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling)

  • 송승엽;지은이;안명숙;김동진;김인중;김석원
    • 원예과학기술지
    • /
    • 제32권1호
    • /
    • pp.105-114
    • /
    • 2014
  • 본 연구에서는 UV-VIS spectrophotometer를 이용한 total carotenoids, flavonoids, phenolics 함량 데이터와 FT-IR 스펙트럼 데이터를 다변량통계분석법을 통하여 기능성 성분 함량이 높은 아프리칸 얌 고속 선발 시스템을 구축하였다. 62개 아프리칸 얌의 total carotenoids 함량은 $0.01-0.91{\mu}g{\cdot}g^{-1}$ dry wt 나타냈다. Total flavonoids와 phenolics 함량은 $12.9-229.0{\mu}g{\cdot}g^{-1}$ dry wt와 $0.29-5.2mg{\cdot}g^{-1}$ dry wt로 각각 나타났다. 아프리칸 얌은 FT-IR 스펙트럼상의 1700-1500, 1500-1300, $1,100-950cm^{-1}$, 부위에서 중요한 스펙트럼 변화가 나타났다. 이 부위는 각각 amide I과 II을 포함하는 아미노산 및 단백질계열의 화합물, phosphodiester group을 포함한 핵산 및 인지질 그리고 단당류나 복합 다당류를 포함하는 carbohydrates 계열의 화합물들의 질적, 양적 정보를 반영하는 부위이다. PCA 분석과 PLS-DA 분석에서 62개 아프리칸 얌은 유연성이 높은 종으로 3개의 그룹을 형성하였다. 아프리칸 얌의 FT-IR 스펙트럼 데이터와 UV-VIS spectrophotometer을 이용한 total carotenoids, flavonoids, phenolics 함량 데이터 간에 PLS regression 분석하였다. Total carotenoids, flavonoids, phenolics 함량 성분의 실측 값과 예측 값간에 상관계수($R^2$)가 각각 0.83, 0.86, 0.72로 나타났다. 이 결과, 아프리칸 얌으로부터 FT-IR 스펙트럼을 이용한 total carotenoids, flavonoids, phenolics 함량 예측이 가능하였다. 본 연구에서 확립된 대사체 수준에서 아프리칸 얌의 유용 기능성 성분 함량 예측 모델링을 통해 품종, 계통의 신속한 선발 수단으로 활용이 가능할 것으로 예상된다.

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.

NMR-based metabolomic profiling of the liver, serum, and urine of piglets treated with deoxynivalenol

  • Jeong, Jin Young;Kim, Min Seok;Jung, Hyun Jung;Kim, Min Ji;Lee, Hyun Jeong;Lee, Sung Dae
    • 농업과학연구
    • /
    • 제45권3호
    • /
    • pp.455-461
    • /
    • 2018
  • Deoxynivalenol (DON), a Fusarium mycotoxin, causes health hazards for both humans and livestock. Therefore, the aim of this study was to investigate the metabolic profiles of the liver, serum, and urine of piglets fed DON using proton nuclear magnetic resonance ($^1H-NMR$) spectroscopy. The $^1H-NMR$ spectra of the liver, serum, and urine samples of the piglets provided with feed containing 8 mg DON/kg for 4 weeks were aligned and identified using the icoshift algorithm of MATLAB $R^2013b$. The data were analyzed by multivariate analysis and by MetaboAnalyst 4.0. The DON-treated groups exhibited discriminating metabolites in the three different sample types. Metabolic profiling by $^1H-NMR$ spectroscopy revealed potential metabolites including lactate, glucose, taurine, alanine, glycine, glutamate, creatine, and glutamine upon mycotoxin exposure (variable importance in the projection, VIP > 1). Forty-six metabolites selected from the principal component analysis (PCA) helped to predict sixty-five pathways in the DON-treated piglets using metabolite sets containing at least two compounds. The DON treatment catalyzed the citrate synthase reactions which led to an increase in the acetate and a decrease in the glucose concentrations. Therefore, our findings suggest that glyceraldehyde-3-phosphate dehydrogenase, citrate synthase, ATP synthase, and pyruvate carboxylase should be considered important in piglets fed DON contaminated feed. Metabolomics analysis could be a powerful method for the discovery of novel indicators underlying mycotoxin treatments.

클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단 (Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function)

  • 박장환;이대종;전명근
    • 조명전기설비학회논문지
    • /
    • 제20권6호
    • /
    • pp.55-62
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 진단 절차를 위한 첫 번째 단계로서 전처리 과정은 획득한 전류를 단순화하고 정규화 하는 것을 수행한다. 데이터의 단순화 과정은 3상전류를 Concrodia 벡터의 크기로 변환하는 것을 적용한다. 다음으로 특징 추출 단계를 커널 주성분 분석과 선형판별분석으로 수행하며, 마지막으로, 분류기는 방사기저함수 네트워크를 사용한다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

지능형 알고리즘을 이용한 재질별 검정색 플라스틱 분류기 설계 (Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm)

  • 박상범;노석범;오성권;박은규;최우진
    • 자원리싸이클링
    • /
    • 제26권2호
    • /
    • pp.46-55
    • /
    • 2017
  • 본 연구에서는 레이저유도붕괴분광(Laser Induced Breakdown Spectroscopy, LIBS)을 이용하여 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks, RBFNNs) 분류기 설계방법론을 개발하고 실제 폐소형가전제품의 플라스틱 분류 시스템에 적용하였다. ABS, PP, PS와 같은 검정색 플라스틱을 구별하기 위해, 지능형 알고리즘 중 하나인 방사형 기저함수 신경회로망 분류기를 설계하였다. 획득한 입력변수는 주성분 분석법(Principal Component Analysis, PCA)을 이용하여 축소시켰으며, 군집화기법 중 하나인 K-means 클러스터링 방법을 이용해 여러 그룹으로 분할하였다. 전체 데이터는 학습 데이터와 테스트 데이터를 4:1의 비율로 나누었으며, 제안된 분류기의 성능 및 신뢰도를 평가하기 위하여 5-FCV(5-Fold Cross Validation) 기법을 사용하였다. 입력변수와 클러스터의 개수가 각각 5개인 경우, 제안된 분류기의 분류 성능은 96.78%로 나타났다. 또한, 제안된 분류기는 다른 분류기들과 비교하였을 경우 분류 성능의 관점에서 우수성을 보여주었다.

스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션 개발 (Development of Recognition Application of Facial Expression for Laughter Theraphy on Smartphone)

  • 강선경;이옥걸;송원창;김영운;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.494-503
    • /
    • 2011
  • 본 논문에서는 스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션을 제안한다. 제안된 방법에서는 스마트폰의 전면 카메라 영상으로부터 AdaBoost 얼굴 검출 알고리즘을 이용하여 얼굴을 검출한다. 얼굴을 검출한 다음에는 얼굴 영상으로부터 입술 영역을 검출한다. 그 다음 프레임부터는 얼굴을 검출하지 않고 이전 프레임에서 검출된 입술영역을 3단계 블록 매칭 기법을 이용하여 추적한다. 카메라와 얼굴 사이의 거리에 따라 입술 영역의 크기가 달라지므로, 입술 영역을 구한 다음에는 고정된 크기로 정규화한다. 그리고 주변 조명 상태에 따라 영상이 달라지므로, 본 논문에서는 히스토그램 매칭과 좌우대칭을 결합하는 조명 정규화 알고리즘을 이용하여 조명 보정 전처리를 함으로써 조명에 의한 영향을 줄일 수 있도록 하였다. 그 다음에는 검출된 입술 영상에 주성분 분석을 적용하여 특징 벡터를 추출하고 다층퍼셉트론 인공신경망을 이용하여 실시간으로 웃음 표정을 인식한다. 스마트폰을 이용하여 실험한 결과, 제안된 방법은 초당 16.7프레임을 처리할 수 있어서 실시간으로 동작 가능하였고 인식률 실험에서도 기존의 조명 정규화 방법보다 개선된 성능을 보였다.

얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술 (Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.155-164
    • /
    • 2004
  • 최근 지능형 로봇에 대한 관심이 모아지고 있다. 지능형 로봇의 가장 큰 특징은 사용자를 추적, 인식하고 그 결과를 기반으로 상호활동적인 대응을 할 수 있다는 점이다. 얼굴인식이 다른 생채인식과의 비교에서 장점을 가질 수 있는 점은 비 강제성과 비 접촉성을 들 수 있다. 그러나 얼굴인식은 얼굴 취득단계부터 차원의 감소가 발생하고 인식하고자 하는 얼굴 및 주변 환경 변화가 매우 심하기 때문에 다른 생체인식에 비하여 인식률이 낮다. 얼굴인식의 성능을 저하시키는 요인들로는 조명변화, 포즈변화, 표정변화, 카메라와의 거리 등을 들 수 있다. 본 논문에서는 실제 환경에서 얼굴 인식 성능에 가장 많은 영향을 미치는 포즈변화에 대응하기 위하여 새로운 선형이동 능동형 카메라를 개발하여, 정면 얼굴에 근접한 영상을 취득하고 주성분 분석 및 Hidden Markov Model 알고리듬을 이용하여 인식률을 개선하고자 한다. 제한된 방법은 지능형 보안시스템 및 모바일 로봇에 적용하는 것을 목표로 개발 되었지만, 높은 정확도의 얼굴인식을 요구하는 응용분야에 널리 적용할 수가 있다.