• Title/Summary/Keyword: Principal Component Analysis (PCA) Algorithm

Search Result 262, Processing Time 0.031 seconds

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

A Fuzzy Neural Network Combining Wavelet Denoising and PCA for Sensor Signal Estimation

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.485-494
    • /
    • 2000
  • In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique . Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors.

  • PDF

Leak Detection in a Water Pipe Network Using the Principal Component Analysis (주성분 분석을 이용한 상수도 관망의 누수감지)

  • Park, Suwan;Ha, Jaehong;Kim, Kimin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.276-276
    • /
    • 2018
  • In this paper the potential of the Principle Component Analysis(PCA) technique that can be used to detect leaks in water pipe network blocks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study. The algorithms were designed to extract a partial set of flow data from the original 24 hour flow data so that the variability of the flows in the determined partial data set are minimal. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The results showed that the effectiveness of detecting leaks may improve by applying the developed algorithm. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks in real-world water pipe networks.

  • PDF

Identifying an Appropriate Analysis Duration for the Principal Component Analysis of Water Pipe Flow Data (상수도 관망 유량관측 자료의 주성분 분석을 위한 분석기간의 설정)

  • Park, Suwan;Jeon, Daehoon;Jung, Soyeon;Kim, Joohwan;Lee, Doojin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.351-361
    • /
    • 2013
  • In this study the Principal Component Analysis (PCA) was applied to flow data in a water distribution pipe system to analyze the relevance between the flow observation dates, which have the outliers of observed night flows, and the maintenance records. The data was obtained from four small size water distribution blocks to which 13 maintenance records such as pipe leak and water meter leak belong. The flow data during four months were used for the analysis. The analysis was carried out to identify an appropriate analysis period for a PCA model for a water distribution block. To facilitate the analyses a computational algorithm was developed. MATLAB was utilized to realize the algorithm as a computer program. As a result, an appropriate PCA period for each of the case study small size water distribution blocks was identified.

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

Nonlinear System Modeling Using Bacterial Foraging and FCM-based Fuzzy System (Bacterial Foraging Algorithm과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • Jo Jae-Hun;Jeon Myeong-Geun;Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 Bacterial Foraging Algorithm과 FCM(fuzzy c-means)클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 Bacterial Foraging Algorithm을 이용하여 전제부 파라미터를 최적화 시킨다. 결론부 파라미터는 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. PCA(Principal Component Analysis)와 FCM을 적용함으로써 타당한 규칙 수를 생성하였고 Bacterial Foraging Algorithm을 이용하여 최적의 전제부 파라미터를 구하였다. 제안된 방법의 성능을 평가하기 위하여 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하였고 우수한 성능을 보임을 알 수 있었다.

  • PDF

Robust Primary-ambient Signal Decomposition Method using Principal Component Analysis with Phase Alignment (위상 정렬을 이용한 주성분 분석법의 강인한 스테레오 음원 분리 성능유지 기법)

  • Baek, Yong-Hyun;Hyun, Dong-Il;Park, Young-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-74
    • /
    • 2014
  • The primary and ambient signal decomposition of a stereo sound is a key step to the stereo upmix. The principal component analysis (PCA) is one of the most widely used methods of primary-ambient signal decomposition. However, previous PCA-based decomposition algorithms assume that stereo sound sources are only amplitude-panned without any consideration of phase difference. So it occurs some performance degradation in case of live recorded stereo sound. In this paper, we propose a new PCA-based stereo decomposition algorithm that can consider the phase difference between the channel signals. The proposed algorithm overcomes limitation of conventional signal model using PCA with phase alignment. The phase alignment is realized by using inter-channel phase difference (IPD) which is widely used in parametric stereo coding. Moreover, Enhanced Modified PCA(EMPCA) is combined to solve the problem of conventional PCA caused by Primary to Ambient energy Ratio(PAR) and panning angle dependency. The simulation results are presented to show the improvements of the proposed algorithm.

Face Recognition by Using Principal Component Anaysis and Fixed-Point Independent Component Analysis (주요성분분석과 고정점 알고리즘 독립성분분석에 의한 얼굴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • This paper presents a hybrid method for recognizing the faces by using principal component analysis(PCA) and fixed-point independent component analysis(FP-ICA). PCA is used to whiten the data, which reduces the effects of second-order statistics to the nonlinearities. FP-ICA is applied to extract the statistically independent features of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.

  • PDF

ECG based Personal Authentication using Principal Component Analysis (주성분 분석기법을 이용한 심전도 기반 개인인증)

  • Cho, Ju-Hee;Cho, Byeong-Jun;Lee, Dae-Jong;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.258-262
    • /
    • 2017
  • The PCA(Principal Component Analysis) algorithm is widely used as a technique of expressing the eigenvectors of the covariance matrix that best represents the characteristics of the data and reducing the high dimensional vector to a low dimensional vector. In this paper, we have developed a personal authentication method based on ECG using principal component analysis. The proposed method showed excellent recognition performance of 98.2 [%] when it was experimented using electrocardiogram data obtained at weekly intervals. Therefore, it can be seen that it is useful for personal authentication by reducing the dimension without changing the information on the variability and the correlation set variable existing in the electrocardiogram data by using the principal component analysis technique.