• 제목/요약/키워드: Primary structure and secondary system

검색결과 97건 처리시간 0.025초

2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성 (Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel)

  • 박형민;조용선;최효상;오금곤;한태희;임성훈;황종선
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

복층 구조의 지하역사 모델에 대한 여객 유동 해석 (Numerical Analysis on Passenger Flow for the Model of Multi-storied Subway Station)

  • 남성원;권혁빈;차창환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1475-1480
    • /
    • 2007
  • Numerical analysis has been conducted to simulate pedestrian flow in the model of two-storied subway station. Because almost all the subway stations are two or three storied structure, simulations are conducted for the passengers those who get off the train and pass the wicket. Passenger flow analysis is very important factor to design the station and also to manage the operation of subway system. In the subway station, pedestrians move to the horizontal directions as well as vertical ones. Therefore, to consider the movement of pedestrians is necessary for the guarantee of safety and conveniency. As the up and down floors are connected with step, escalator and elevator, the entire movements in the multi-storied station should be simulated as like a 3-dimensional flow. Numerical schemes for the directional sweeping are developed to prevent the dependency on physical structure of station and to determine primary direction and secondary one. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF

복수공항시스템 분석을 통한 제주신공항 운영방안 연구 (Analysis of Multi-Airport System Application Measures for New Jeju Airport)

  • 전제형;박정민;이준오;송병흠
    • 한국항공운항학회지
    • /
    • 제25권3호
    • /
    • pp.89-100
    • /
    • 2017
  • In order for the international aviation community to efficiently and safely manage the gradual increase of air passenger demand, direction suggestions of airport traffic prediction based on future airport capacity requirements, airport design and infrastructure establishment is utilized by airport traffic data that is m comparable internationally. It is a global trend to pursue more efficient airport operating system structure to accept air passenger demand through more realistic comparable data in order to escape from the structure of reckless airport establishment and infrastructure composition based on passenger demand predictions referring to simple statistical data that has existed in the past. This study aimed to seek effective operational measures for the New Jeju airport scheduled to be opened in 2025 by time-series analysis. This study also analysed airport operation strategies, air traffic distribution strategies, cargo volume increase rates and its effectiveness of airports adopting the multi-airport system that have similar operational practices and geographical conditions. This study sought the most appropriate multi airport system application measures for New Jeju airport to promote efficiency and international competitiveness.

PRT 시스템에 적합한 유도 전력 집전 장치의 모델링 (Modeling of inductive power collector for PRT system)

  • 한경희;이병송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.794-799
    • /
    • 2005
  • In this paper, the inductive power collector using electromagnetic induction for the PRT(Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The proposed the inductive power collector is used for the PRT system, which has a large air-gap and demands a large electrical power capability. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, double layer construction of secondary winding. which was divided in half to increase both output current and output voltage was suggested. Also, model of power collector and parallel winding structure are presented, in addition, the performance of inductive power collector to alignment condition between the primary power line and the inductive power transformer was verified by computer simulation of 2kW model.

  • PDF

소형궤도차량 시스템에 적합한 유도전력 집전 장치의 모델링 (The Modeling of inductive power collector for light railway system)

  • 한경희;이병송;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.215-217
    • /
    • 2005
  • In this paper, the inductive power collector using electromagnetic induction for the PRT{Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The proposed the inductive power collector is used for the PRT system, which has a large air-gap and demands a large electrical power capability. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, double layer construction of secondary winding, which was divided in half to increase both output current and output voltage was suggested. Also, model of power collector and parallel winding structure are presented, in addition, the performance of inductive power collector to alignment condition between the primary power line and the inductive power transformer was verified by computer simulation of 2kW model.

  • PDF

플라이휠을 장착한 농형/권선형 전동기를 이용한 두 고조파 보상 시스템의 비교 (Comparison of Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors With Flywheel)

  • 김윤호;이경훈;양성혁;박경수
    • 한국철도학회논문집
    • /
    • 제4권1호
    • /
    • pp.16-22
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in the power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration, noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power network system. Among various approaches, in this paper, two kinds of approaches are compared and evaluated. They are flywheel compensator based on secondary excitation of wounded rotor induction motor(WRIM) and primary excitation of squirrel cage induction motor(SCIM). Both systems have a common structure. They use a flywheel as a energy storage device and use PWM inverters.

  • PDF

Low-frequency modes in the fluid-structure interaction of a U-tube model for the steam generator in a PWR

  • Zhang, Hao;Chang, Se-Myong;Kang, Soong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1008-1016
    • /
    • 2019
  • In the SG (steam generator) of PWR (pressurized water reactor) for a nuclear plant, hundreds of U-shaped tubes are used for the heat exchanger system. They interact with primary pressurized cooling water flow, generating flow-induced vibration in the secondary flow region. A simplified U-tube model is proposed in this study to apply for experiment and its counterpart computation. Using the commercial code, ANSYS-CFX, we first verified the Moody chart, comparing the straight pipe theory with the results derived from CFD (computational fluid dynamics) analysis. Considering the virtual mass of fluid, we computed the major modes with the low natural frequencies through the comparison with impact hammer test, and then investigated the effect of pump flow in the frequency domain using FFT (fast Fourier transform) analysis of the experimental data. Using two-way fluid-structure interaction module in the CFD code, we studied the influence on mean flow rate to generate the displacement data. A feasible CFD method has been setup in this research that could be applied potentially in the field of nuclear thermal-hydraulics.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

미셸 푸코의 '질병의 공간화' 개념을 이용한 치의공간구성 분석 연구 -서울대학교 치의학 대학원과 치과병원 사례 분석을 중심으로 (A Study on the Analysis of Dental Spatial Composition through Michell Foucault's 'Spatialization of Disease' - Focused on the Case Study of Seoul National University, School of Dentistry and Dental Hospital)

  • 정태종
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제25권3호
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose of this study is to find the relationship between Michell Foucault's the primary, secondary, and tertiary spatialization of disease and spatial composition for the development of architectural planning of the healthcare architecture. Methods: Literature review of spatialization of disease and comparison between medical and dental disease have been conducted. The synchronic structure and diachronic change of spatialization process have been analyzed through spatial composition and history of Seoul National University, School of Dentistry and Dental Hospital. Results: The result of this study can be summed up in three points. First of all, spatialization of dental disease is similar to that of medicine but it should be more focused on the tertiary spatialization. The second one is that the process of spatialization of dental disease started the secondary spatialization first and the primary spatialization followed after a short interval and spatial composition has been followed the process of spatialization of dental disease in Korea. The third one is that the tertiary spatialization has not been actively gone along until recently and it has to be developed in near future. Implications: It is necessary to analyze spatialization of dental disease in other dental facilities to develop the relationship between spatial composition and program in healthcare system.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.