• 제목/요약/키워드: Primary leaf

검색결과 219건 처리시간 0.024초

은행나무의 성숙배 및 유식물에 있어서 유관속조직의 분화 (Vascular Differentiation in the Mature Embryo and the Seedling of Ginkgo biloba L.)

  • 홍성식
    • Journal of Plant Biology
    • /
    • 제26권4호
    • /
    • pp.207-216
    • /
    • 1983
  • Mature embryo and developing seedlings of Ginkgo biloba L. were embedded in a paraplast and serially sectioned at 10${\mu}{\textrm}{m}$ to examine vascular differentiation and vascular transition. Procambium and protophloem formed a continuous system along the epicotylhypocotyl root axis and cotyledons in mature embryo, whereas protoxylem was differentiated discontinuously in the cotyledons and rarely in the upper hypocotyl. The traces of the first and second leaf primordia apeared almost at the same time oppositely to each otehr at the epicotyl and alternately with the cotyledon traces in the upper hypocotyl. The trace differentiated bidirectionally toward the epicotyl and root tips. the young root initially formed a diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem of the root was changed totriarch and tetrarch xylem, respectively. On the formation of primary vascular system of Ginkgo biloba, it is suggested that the primary phloem forms a continuous system throughout the seedling, whereas the primary xylem of the epicotyl is formed independently from that of the root-hypocotyl cotyledon system.

  • PDF

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제18권3호
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Leaf Rot and Leaf Ring Spot Caused by Rhizoctonia solani in Chinese Cabbage

  • Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Yun, Jong-Chul
    • 식물병연구
    • /
    • 제19권4호
    • /
    • pp.300-307
    • /
    • 2013
  • This study was conducted to determine the occurrence of leaf rot and leaf ring spot, caused by Rhizoctonia solani in Chinese cabbage under seedling nursery and cultivation greenhouses. Symptoms of leaf rot and leaf ring spot were found in three Chinese cabbage cultivars, Brassica campestris subsp. pekinensis, 'Ryeokgwang', 'Daetong', and 'CR mat'. In Hwacheon, the disease incidence was 73.8% in the seedling stage of the Chinese cabbage. In Icheon, the symptoms were observed on the upper leaves of the Chinese cabbage cultivar, 'Norangmini' with 20.5% of disease incidence. The symptoms appeared as primary lesions consisting of small, circular necrotic ring spots with gray color, 1.4-3.0 mm in diameter, accompanied by secondary rot lesions with large irregular borders of leaves. The color of mycelial mat of 20 isolates was dark brown and light brown. The average hyphal diameter of all the isolates was within 5.01-11.12 ${\mu}m$. Among the 20 strains isolated from Chinese cabbage, 16 isolates and four isolates anastomosed with the AG-1 (IB) and AG-1 (IC), respectively. Twenty isolates tested were only virulent on foliage parts of Chinese cabbage leaves but were avirulent on stem parts of the plants. Based on the mycological characteristics and pathogenicity test on host plants, the fungus was identified as Rhizoctonia solani.

Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong;Yi, Myong-Jong;Son, Yo-Whan;Jin, Guangze;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • 한국산림과학회지
    • /
    • 제99권5호
    • /
    • pp.726-735
    • /
    • 2010
  • Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

Effect of Gamma Rays on the Growth Performance of Bangladesh Clone Tea

  • Ali, M. Aslam;Samad, M. A.;Amin, M. K.
    • 한국환경농학회지
    • /
    • 제24권1호
    • /
    • pp.66-70
    • /
    • 2005
  • The experiment was carried out to investigate the effects of gamma radiation on the early growth performance and physiological traits of BT2 clone tea, the most promising cultivar released by Bangladesh Tea Research Institute. The fresh shoot cuttings were irradiated with seven different levels of gamma radiation such as 0, 10, 20, 30, 40, 50 and 60 Gy from Cobalt 60Co source (Dept. of PlantBreeding, Bangladesh Institute of Nuclear Agriculture). Thereafter, the irradiated shoot cuttings were planted in polythene bags and kept under natural conditions. It was observed that callusing was initiated from 8th weeks after placement of tea shoot cuttings in the polythene bags and completed by 12th weeks. The morphological growth of tea shoot cuttings were recorded under varying levels of gamma radiation and growth stages. It was observed that the number of leaves, number of primary branches, base diameter, root length and total leaf area per plant significantly increased with the progress of time and increasing levels of gamma radiation, however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic makeup. After 56 weeks of planting, the plant height, the number of leaves and primary branches per plant, base diameter, root length and total leaf area per plant recorded were 65.70 cm, 30.67, 7.33, 1.48 cm, 23.50 cm, and 1250.67 cm2 per plant respectively under the radiation level 60 Gy, whereas the corresponding figures of the above parameters at the control treatment were 76.21 cm, 18.33, 3.67, 0.92 cm, 17.75 cm and 778.33 cm2 per plant, respectively. A significant relationship was observed among the physiological growth parameters with the increasing levels of gamma radiation. The total dry matter gain, leaf area index, absolute growth rate and relative growth rate were significantly influenced with the rising levels of gamma radiation (up to 60 Gy), whereas the net assimilation rate of individual tea plant non-significantly responded as compared to those of control treatment. Finally after 56 weeks of planting, the maximum total dry weight gain, leaf area index, absolute growth rate, relative growth rate and net assimilation rate recorded under 60 Gay radiation level were 40.25 g/plant/week, 4.25, 1.18 g/week, 0.0621g/g/week and 17.07 g/m2/week respectively.

Human Immunodeficiency Virus Type I에 대한 수종 식물 추출물의 억제활성 검색 (Screening of Some Plant Extracts for Inhibitory Effects on HIV-1 and Its Essential Enzymes)

  • 박종철;이종호;김경업;조성기;변명우;;;유영법
    • 생약학회지
    • /
    • 제29권4호
    • /
    • pp.338-346
    • /
    • 1998
  • In order to elucidate the relationship between anti-HIV-1 enzyme activity and inhibition of HIV-1 replication by natural sources, extracts from some plants using the foods and oriental medicines were tested for inhibitory effects on the viral replication, reverse transcriptase (RT), protease and ${\alpha}-glucosidase$. In the anti-RT test, water extracts of Ficus carica (leaf), Houttuynia cordata (aerial part) and Ixeris tamagawaensis (aerial part) showed more than 79% inhitibion at a concentration of $100\;{\mu}g/ml$. The protease and ${\alpha}-glucosidase-inhibiting$ samples in the screening were water extract of Syringa dilatata (leaf) and methanol extract of Hibiscus syriacus (leaf and stem), which showed more than 40% inhibition at a concentration of $100\;{\mu}g/ml$. In the primary anti-HIV-1 test, water extracts of Equisetum arvense (aerial part), Hibiscus syriacus (leaf), Ixeris tamagawaensis (aerial part) and Pueraira thunbergiana (leaf) showed the potent inhibition against HIV-1 induced cytopathic effects.

  • PDF

동대만과 오지리 연안에 서식하는 해초(Zostera marina)내 질소함유율의 계절적 변화 (Seasonal Nitrogen Dynamics of Zostera marina Inhabited in Dongdae Bay and Ojiri)

  • 김민섭;이성미;신경훈
    • 환경생물
    • /
    • 제24권2호
    • /
    • pp.186-194
    • /
    • 2006
  • Nitrogen dynamics of Seagrass Zostera marina were investigated in both Dongdae Bay and Ojiri from March to August, 2004. All seagrass samples were separated into four fractions such as leaves (new and adult), sheath and rhizome in order to understand temporal variations of nitrogen content in different fractions of Zostera marina. There are temporal variations of shoot production rates and total nitrogen contents in their different fractions at both study areas. Leaf production were almost 4 to 5 fold higher in summer than in winter. The irradiance is the primary factor controlling the leaf production of Zostera marina in both sites although water temperature also influence its productivity. Nitrogen contents of leaves were overall low in summer than in winter, but nitrogen content of rhizome increased during the summer season. In addition, nitrogen contents of new leaves were mostly higher than adult leaves in spite of lower nitrogen content of new and adult leaves in high productivity period. This result suggests that Zostera marina seems to have significant translocation ability of nitrogen in a shoot. The nitrogen content of leaf tissue may reflect nutritional nitrogen availability.

Improvement of Antigen Blotting in a Tissue Blot Immunobinding Assay for the Detection of Two Chili Pepper Viruses

  • Han, Jung-Heon;Shin, Jun-Sung;Kim, Young-Ho;Kim, Byung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1885-1889
    • /
    • 2007
  • The tissue blot immunobinding assay (TBIA) is widely used for the detection and localization of plant viruses in various plant tissues. The basic experimental procedures of TBIA sampling and blotting were simplified using commercially available micropipette tips. This method was termed the ring-blot immunobinding assay (R-BIA), as the blot on the membrane forms a ring shape. The detection efficacy of R-BIA was tested for two chili pepper viruses, pepper mild mottle tobamovirus (PMMoV) and pepper mottle potyvirus (PepMoV), following the optimized serological procedures of TBIA (length of the incubation period and BSA concentration, and primary and secondary antibodies). Sensitivity of the R-BIA was about 1 ng/ml of purified PMMoV in pepper leaf sap from a healthy pepper plant. R-BIA also showed high specificity in the detection of PMMoV and PepMoV. Moreover, the modified sampling and blotting procedures were simpler and more reliable than other TBIA methods (such as whole-leaf blotting and crushed-leaf blotting), suggesting that the R-BIA may be used for medium- to large-scale detection of plant viruses in laboratories with minimal facilities.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질 (Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제6권2호
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF