• Title/Summary/Keyword: Primary frequency

Search Result 1,506, Processing Time 0.034 seconds

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

Robust Cognitive-Radio-Based OFDM Architecture with Adaptive Traffic Allocation in Time and Frequency

  • Kim, Nak-Myeong;Kim, Mee-Ran;Kim, Eun-Ju;Shin, Su-Jung;Yu, Hye-In;Yun, Sang-Boh
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.21-32
    • /
    • 2008
  • Cognitive radio (CR) has been proposed as an effective technology for flexible use of the radio spectrum. The interference between primary users and CR users, however, becomes a critical problem when they are using adjacent frequency channels with different transmission power levels. In this paper, a robust CR orthogonal frequency division multiplexing (OFDM) architecture, which can effectively suppress interference to nearby primary users and overcome adjacent channel interference (ACI) to the CR user, is proposed. This new approach is characterized by adaptive data repetition for subcarriers under heavy ACI, and adaptive time spreading for subcarriers near the borders of the CR user's spectrum. The data repetition scheme provides extra power gain against the ACI coming from primary users. Time spreading guarantees an acceptable interference level to nearby primary users. By computer simulation, we demonstrate that, under a CR environment, the proposed CR OFDM architecture outperforms conventional OFDM systems in terms of throughput and BER performance.

  • PDF

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

Frequency Window Method for the Vibration of Primary-Secondary Structural Systems (Frequency Window Method에 의한 1차-2차 구조시스템의 진동특성)

  • 민경원
    • Journal of KSNVE
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 1991
  • The dynamic properties of primary-secondary structural systems are examined using analytical expressions for the modal properties. The analysis begins with a Lagrange multiplier formulation to develop a characteristic equation in terms of primary system mobilities and secondary system impedances. The complexity of the characteristic equation by developing new method, frequency window method. It is shown that the reduction of complexity can only be obtained by a reduction of accuracy, but by retaining the dominant effects of the dynamics problem, the loss of accuracy is not excessive. The reduced problem is examined further to develop simple expressions for the modal properties which provide insight into the resonance characteristics of the primary-secondary system problem. The results are useful as a complement to existing computational techniques for understanding and interpreting dynamic analysis results.

  • PDF

Effect of Centrifugal Casting Parameters on The Distribution of Primary Si Particles of B390 Aluminum Alloy (B390 알루미늄 합금의 초정Si 입자분포에 미치는 원심주조 공정인자의 영향)

  • Park, Jeong-Wook;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • To develop a functionally graded microstructure of cylindrical liner, effect of centrifugal casting parameters such as pouring temperature of hyper-eutectic Al-Si alloy melt, mold pre-heating temperature, and rotational frequency of mold on distribution of primary Si particles across wall thickness were investigated. Segregation tendency of Si particles toward inner side of cylindrical liner increased as the increase of rotational frequency of mold, pouring temperature of melt and mold pre-heating temperature. Especially, distribution density of primary Si particles within 1.5 mm from inner surface of cylindrical liner was above 35% under the centrifugal casting condition of $750^{\circ}C$ melt pouring temperature, $300^{\circ}C$ mold pre-heating temperature, and 2500 rpm mold rotational frequency.

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.

Working Patterns and Job Satisfaction in Primary Health Practitioners (보건진료전담공무원의 업무분석과 직무만족도)

  • Kim, Jin Hak;Song, Min Sun
    • Journal of Korean Academic Society of Home Health Care Nursing
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • Purpose: The purpose of this study was to identify the frequency and duration of primary health practitioners' work, and their job satisfaction, and to confirm differences in work and job satisfaction by type of primary health care post. Methods: Work frequency, duration of work, and job satisfaction were estimated by 371 primary health practitioners. Chi-square test and t-test were used to identify the differences in working patterns and job satisfaction by type of primary health care post. Results: Primary health practitioners were found to spend more time working with the elderly population than with students, pregnant women, children, people with disabilities, and multicultural families. Those in costal areas were more concerned with students than those working inland. In the latter group of practitioners, more time was spent working with patients with chronic diseases, pregnant women, women, children, multicultural families, and mental health clients. Also, the job satisfaction of inland primary health practitioners was significantly higher than that of costal practitioners. Conclusion: It is necessary to identify the characteristics of primary health practitioners' work, focusing on changes in the medical service environment. Furthermore, it is necessary to provide job training according to type of primary health care post, as practitioners' approaches should differ between posts.

Control Valve Positioner and Its effect on a Gas Turbine MW Control (공정제어루프 최종 조작부의 동작특성에 관한 연구)

  • Kim, Jong-An;Shin, Yoon-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.728-730
    • /
    • 1998
  • The control valve positioner is a high gain plain proportional controller which measures the valve stem position and compares it to its setpoint which is the primary controller output. The positioner in effect is the cascade slave of the primary controller. In order for a cascade slave to be effecttive, it must be fast enough compared to the speed of its set point change. This paper describes the positioner transfer function and its effect on the entire control loop characteristic based on the simulation results. The result showed that the control valve and positioner determined the gain and phase angle in the high frequency range, while the primary controller and process determined those of the low frequency range. We can also anticipate the combined characteristics in the whole frequency range when each element's frequency response is known.

  • PDF

Free Vibration of Primary-Secondary Structures with Multiple Connections (다중 지지된 주-부 구조물의 자유 진동)

  • 민경원
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical closed-form expressions describing the fundamental modal properties in the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF

Free vibration of primary-secondary structures with multiple connections (다중 지지된 주-부 구조물의 자유진동)

  • 민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.63-68
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical dosed-form expressions describing the fundamental modal properties of the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF