• Title/Summary/Keyword: Primary Spark Voltage

Search Result 8, Processing Time 0.021 seconds

Measurement Technique of Required Spark Voltage Using Primary Ignition Voltage and Misfire Application in a SI Engine (SI엔진에서 점화 1차 전압을 이용한 방전요구전압의 측정기법과 실화적용에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.10-19
    • /
    • 1999
  • In this study , a simple method has been developed to detect the required spark voltage by using the primary spark voltage instead of the secondary spark voltage. Through engine motoring experiments, this method testified to be quite satisfactory. Though the required spark voltage is affected by many in-cylinder conditions, temperature is one of the most important factors. The temperature increases significantly by combustion and the required spark voltage also changes by the temperature during the expansion stroke. On the basis of this fact, misfire can be monitored by comparing the required spark voltage between compression stroke and expansion stroke. So, in this study, two step ignition method is introduced to monitor combustion at expansion stroke. The test result shows that this method can be used to detect complex misfire pattern.

  • PDF

A Study on Development of Arc Fault Circuit Interrupter Used in House Distribution Line (옥내 배전선로용 아크차단기 개발에 관한 연구)

  • Kwak, Dong-Kurl;Choi, Jung-Kyu;Park, Young-Jic;Kim, Jin-Hwan;Son, Jae-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.546-547
    • /
    • 2013
  • This paper proposes an arc fault circuit interrupter (AFCI) using the distorted voltage wave in electric arc faults. It perceives a voltage instantaneously at the time of voltage drop. and occurrence. It is an AFCI of the new concept which operates with high reliability. The primary reason of electric fire is arc and spark. It prevents an electric fire or an electric leakage accident with quick responsiveness. Earth Leakage Circuit Breaker(ELB), Molded_case Circuit Breaker (MCCB) or Residual Current Protective Device(RCD) can not cut off electric arc or spark to be a major factor of electrical fire. This theory will be able to intercept an arc or a spark. which occurrence with periodic. Consequently It raises a reliability and validates a practicality of RCD.

  • PDF

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

A Study on Design and Implementation of the Tesla Coil using Semiconductor Device (반도체 소자를 이용한 테슬라 코일의 설계 및 제작)

  • Kim, Young-Sun;Kim, Dong-Jin;Lee, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage (에폭시 성형 점화코일의 인가전압에 따른 부분 방전 온도 의존성)

  • Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • A gasoline engine automobile uses high voltage generation of the ignition coil, igniting and burning mixed fuel in the combustion chamber, which drives the engine. When the electronic control unit intermits a current supplied to the power transistor, counter electromotive force with a low voltage is generated by self induction action in the ignition primary coil and a high voltage is induced by mutual induction action with the primary ignition coil in the second ignition coil. The high voltage is supplied to the ignition plug in the combustion chamber, causing a spark, igniting the compressed mixed fuel. If a very small defect occurs inside the insulating material when a voltage is applied in said ignition coil, the performance of the insulation material will get worse and breakdown by a partial discharge of corona discharge. Thus, in this experiment, we are to contribute to improve the performance and ensure the reliability of the ignition coil by investigating partial discharge characteristics according to the change of voltage and temperature when a voltage is applied to the specimen of the epoxy molding ignition coil.

A Study of the Pre-Resistance Effects on the Optimization For Performance of the Ignition System with the Breaker Point Type (Breaker Point 型 점火裝置 性能 을 極大化하기 위한 Pre - Resistance 효果 에 對한 硏究)

  • 손병진;신영철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 1982
  • One of factors that affect combustion in the cylinder of the engine is to keep a greater energy in the ignition system to minimize pollutant emissions and to increase its performance of the low temperature. This paper reviews theoretically the state and input variables of the ignition system from the state transition equation. Effects on characteristics of the system such as primary current, secondary available voltage and spark duration by reducing the pre-resistance from 3.5 to 0 ohm in 12V system is experimentally investigated when the ignition coil has a primary resistance of 1.5 ohms ad the dwell angle of the breaker point is 43.2 degrees (0.75 radian). Advantages and limitations for using the low resistance of the primary circuit are also presented to optimize the performance of the ignition system with the breaker point.

The Influence of the Cathode Surface State on the Spark Voltage in the Townsend Discharge Domain (Townsend 방전영역의 불꽃전압에 미치는 음극표면상태의 영향)

  • 백용현
    • 전기의세계
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 1979
  • There are a great number of papers on the Townsend discharge in gases, and many of them are concerned with the effect of the cathode. It has been regarded that there are two kinds of effect of the electrodes, especially of the cathode; (a) the effect caused by the difference of the cathode material and (b) the effect by the change of the cathode surface state even in the same material. Both of them may change the secondary coefficient following after the change of the work function, and the atter may further change the primary ionization coefficient as foreign atoms on the surface may be dseorbed in sparks to decrease the purity of the gas. Thus the two effects must be investigated independently to study the roles of the cathode in gas discharges. In this report the effect of the cathode material on the sparking voltage is described. The experiment is also carried out under the condition that the desorption of impurities from the cathode be negligible. From these the new correlativity between the work function of the cathode and the sparking voltage is obtained. In addition, the interesting character of the minimum point of the Paschen's curve can be found.

  • PDF

A Study on the Safety Estimation of Wiring Connection Connector Manufactured by Housing Type (하우징 형태(Housing Type)로 제작된 배선 연결 커넥터의 안전성 평가에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • The purpose of this study is to evaluate the safety of a wire connector fabricated for the effective installation of a lighting fixture including its contact resistance, insulation resistance, withstanding voltage characteristics, etc., and to provide the basis for the analysis and judgment of PL(Product Liability) dispute by presenting a damage pattern due to a general flame and overcurrent. This study applied the Korean Standard (KS) for the incombustibility test of the connector using a general flame and performed an overcurrent characteristics test of the connector using PCITS (Primary Current Injection Test System). The contact resistance of the housing connector was measured using a high resistance meter and the insulation resistance was measured using a multimeter. In addition, a supply voltage of AC 1,500V for testing the withstanding voltage characteristics was applied to both ends of the connector. Measurement was performed on 5 specimens and the measured values were used as a basis for judgment. Since the connector is fabricated in the form of a housing, it can be connected and separated easily and has a structure that allows no foreign material to enter. In addition, since it has a structure that allows wires to be connected only when their polarity is identical, any misconnection that may occur during installation can be prevented. When the incombustibility test was performed by applying a general flame to the connector, it showed outstanding incombustibility characteristics and the blade and blade holder connected to the housing remained firmly secured even after the insulation sheath (PVC) was completely destroyed by fire. In addition, the mechanism of the damaged connecting wire showed a comparatively uniform carbonization pattern and it was found that some residual melted insulation material was attached to both ends. In the accelerated life test (ALT) to which approximately 500% of the rated current was applied, the connector damage proceeded in the order of white smoke generation, wire separation, spark occurrence and carbonization. That is, it could be seen that the connector damaged by overcurrent lost its own metallic color with traces of discoloration and carbonization. The contact resistance of the connector at a normal state was 2.164mV/A on average. The contact resistance measured after the high temperature test was 3.258mV/A. In addition, the insulation resistance after the temperature test was completed was greater than $10G\Omega$ and the withstanding voltage test result showed that no insulation breakdown occurred to all specimens showing stable withstanding voltage and insulation resistance characteristics.