• Title/Summary/Keyword: Primary Consolidation

Search Result 97, Processing Time 0.027 seconds

Studies on the Long-term Consolidation Characteristics of Peats (이탄의 장기압밀특성에 관한 연구)

  • 김재영;주재우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.106-116
    • /
    • 1989
  • This study aims at scrutinizing the long4errn consolidation characteristics of peats sampled at three different regions of Chonbuk province. The standard consolidation test and the single load consolidation test were performed about these samples and especially in case of the latter the loading period was 350 days. The main condusions analyzed are as follows. 1. Void ratio showed much greater values than that of the general clay and was decresed greatly according to the increase of the load. 2. In case of the relationship between the sefflement and the long-term settlement time the rate of settlement increment became great according to the increase of the load step and the long4erm settlement became linely proportional to the logarithm of time alter 10 minutes. 3. The linear correlation was showed between the long4erm settlement time and the void ratio and therefore equations by regression analysis were derived in order to estimate the long-term settlement The slope of straight lines increased according th the increase of the load step and secondary consolidation coefficients ranged from 0.04-0.27. 4. The secondary consolidation coeffcient became linealy proportional to the compression index and the ratio of Ca to CC was 0.072. 5. The period required in ending the primary consolidation was about 10 minutes and alter that the secondary consolidation coefficient appeared to have constant value. Therefore the secondary consolidation coefficient was judged to be used as a significant factor in estimating the long4erm settlement. 6. In case of the single load consolidation test the secondary consolidation coefficient showed the tendancy increasing according to the increase of the consolidation pressure.

  • PDF

Assessment of long-term behaviour of a shallow tunnel in clay till

  • Wang, Z.;Wong, R.C.K.;Heinz, H.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.107-123
    • /
    • 2010
  • Ground settlements and pore pressure changes were monitored around a shallow tunnel constructed in clay till during the excavation and primary lining installation. The settlements above the tunnel continued to develop for up to 100 days after the primary lining installation. Triaxial compression tests were carried out to estimate the short-term and long-term deformation characteristics of the till. Numerical simulation was conducted to history match the field measurements, and thus, to quantify the settlements induced by ground stress relief, consolidation and creep. It was found that the surface settlements due to ground stress relief, consolidation and creep are 17, 12 and 71% of total settlement (about 44 mm), respectively. In addition, early installation of rigid concrete lining could be an effective means to reduce the settlement due to creep.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

$C_a/C_c$ for Soft Clay at the Southern Port of Korea by Laboratory Consolidation Tests (실내압밀시험에 의한 남해안지역 연약점토의 $C_a/C_c$ 평가)

  • 김규선;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.70-77
    • /
    • 1999
  • Consolidation settlements on soft clay are often large and potentially damaging to structures. Currently, large-scale projects are in progress in Korea. These structures will be constructed on both thick and soft clay layers, and so the accurate evaluation of magnitude of settlement is required at every step in design and construction. Especially, secondary compression play an important role in consolidation settlements on soft clay. Generally, the magnitudes of secondary compression are evaluated by laboratory and in-situ consolidation tests or by empirical $C_{a/}$ $C_{c}$ relationships. The empirical $C_{a/}$ $C_{c}$ may not be only economical, but a fast and powerful tool in estimating secondary consolidation settlement. However, databases of the $C_{a/}$ $C_{c}$ relationship for sites in Korea are currently insufficient. The purpose of this study is to investigate the relationship of $C_{a/}$ $C_{c}$, on marine clay near the southern sea in Korea. In this study a series of incremental loading consolidation tests (measuring base pore water pressure) are performed. It was found that the $C_{a/}$ $C_{c}$ on undisturbed marine clay equaled 0.0397. This value is similar to the value proposed by Mesri and Castro(1987) for inorganic clay and silt. and silt. and silt.

  • PDF

Geotechnical Engineering Characteristics and Consolidation Settlement Estimation of Waste Lime Landfill (폐석회 매립지반의 지반공학적 특성 및 압밀침하량산정)

  • Shin, Eun-Chul;Lee, Ae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to examine the consolidation characteristics of waste landfill from sodium carbonate production. The waste lime is a byproduct from the production of soda ash. The consolidation settlement of waste lime landfill was determined for waste lime specimen which obtained from the field boring. The consolidation tests are conducted for determination of the primary and secondary consolidation settlements. The waste lime is classified as an organic soil with high plasticity. As a result of an organic content test, the contents of organic matter in waste lime is much higher than that of normal clay. Finally, the total consolidation settlement of waste lime landfill is calculated by using a theoretical method and computer program for the given initial void ratio, compression index, and embankment height.

Calculation of Immediate Settlement Caused by Shear Deformation for Embankment on Soft Ground (연약지반 성토시 전단변형에 의하여 유발된 즉시침하량의 산정)

  • 정하익;진현식;진규남;김달용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.78-83
    • /
    • 1999
  • The ultimate settlement of soft clay consists of three parts: $\circled1$ immediate settlement, S$\sub$d/; $\circled2$ Primary consolidation settlement, S$\sub$c/; $\circled3$ Secondary consolidation settlement, S$\sub$s/. In general, S$\sub$c/ can be accurately calculated by one-dimensional consolidation and S$\sub$s/ or S$\sub$d/ may be ignored. This paper focuses on a calculation method to estimate the immediate settlement induced by lateral deformation of subgrade, to which shear stress is applied by embankment on soft ground. Immediate settlement and consolidation settlement are discussed by comparing the field measurement of the Yangsan test embankment on treated soft foundation by vertical paper drains.

  • PDF

A study on the characteristics of primary and secondary settlement for a peat soil in Sri-Lanka (Sri-Lanka내 Peat Soil의 일차압밀 및 이차압축 침하특성에 관한 연구)

  • Jin, Sung-Ki;Lee, Jae-Weon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.235-242
    • /
    • 2004
  • For this study, a Peliyagoda area located on a route was selected among many sections of a CKE(Colombo to Katunayake Expressway) route in Sri-Lanka. Its subground consists of a very weak and thick peat soil named amorphous or fibrous peat. All of data, obtained in the design process of soft ground treatment were analyzed to evaluate the settlement characteristics resulted from an embankment load and to present reasonable methods for estimation of secondary compression settlement. For these purposes, soil parameters were used obtainedby field and laboratory tests the settlement analyses were conducted base on the field monitoring results within 20 months. In addition, Reasonable methods were studied to estimate primary consolidation and secondary compression settlement.

  • PDF

Evaluation of Consolidation Properties in Soft Soils Using Elastic and Electromagnetic Waves (전단파와 전자기파를 이용한 연약 지반의 실내 압밀 특성 평가)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.25-34
    • /
    • 2008
  • A new hybrid oedometer cell is designed and manufactured to investigate a behavior of soft soils by using elastic and electromagnetic waves during consolidation test. Bender elements, which generate and detect shear waves, are placed in the top cap and the bottom plate and mounted on the oedometer wall. Double wedge type electrical resistance probe, which measures local void ratio change, is positioned onto the top cap of the oedometer cell. The bender elements and the electrical resistance probe are anchored into a nylon set screw with epoxy resin. The nylon set screw with epoxy resin minimizes directly transmited elastic waves through the oedometer cell due to impedence mismatch and allows for easy replacement of defected bender elements and electrical resistance probe. Primary consolidation time can be estimated from the slope of electrical resistance versus log time curve and the evolution of shear wave velocity. The shear wave velocity can be used to assess inherent anisotropy when disturbance effects are minimized because particle alignment affects the shear wave velocity. The void ratios evaluated by the electrical resistance probe are similar to those by the settlement during consolidation. This study suggests that the shear wave velocity and the electrical resistance can provide complementary imformations to understand consolidation characteristics such as primary consolidation, anisotropy, and void ratio.

Studies on the Influence of Sample thickness, Load Increment Ratio and Load Increment Duration on Consolidation Characteristics. (시료의 두께, 하중증가율 밀 재하시간이 압밀특성에 미치는 영향)

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.3
    • /
    • pp.4750-4770
    • /
    • 1978
  • Under the various variations of the sample thickness, the load increment ratio and the load increment duration, this consolidation test of the clay in the Asan Bay was tried for the comparison with the standard consolidation test. The results gained are as follows; 1. The void ratio variations of the leached-clay samples were increasingly high, according as the sample thickness thinned and the load increment duration and the laod increment ratio increased. 2. The coefficient of consolidation were increased with the increment of the sample thickness, of the load increment ratio and of the load increment duration. Near the pre-consolidation load, the coefficient of secondary consolidation had the maximum value and lessened with the increment of the sample thicknss, and of the load increment duration 3. The value of the pre-consolidation load increased in proportion to the increment of the sample thickness and the decrease of the load increment ratio and the load increment duration. 4. The compression indices increased as the increment of load increased and decreased as the sample thickness increased. 5. The initial compression ratio increased as the sample thickness, the load increment ratio and the load increment duration decreased. The ratio of primary compression to the secondary decreased with the increment of the sample thickness and of the load increment ratio. 6. The time at the completion of psimary consolidation increased with the increment of the sample thickness and of the consolidation load, and with the decrease of the load increment ratio. 7. The compression indicses increaed as the sample thickness lessened and decreased as the load increment ratio increased. The coefficient of consolidation increased according as the sample thickness, the load increment ratio and the load increment duration went up. The settlement at the construction site should be calculated highly in proportion as the sample thickness lessened and the load increment ratio increased. The consolidation ratio is thought to be accelerated if the sample thickness and the load increment ratio becomes higher and the load increment duration longer.

  • PDF

A Study on the Effect of Promoting Consolidation by Recycled-Aggregate Porous Concrete Pile (순환골재 다공질 콘크리트말뚝에 의한 압밀촉진효과에 관한 고찰)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.35-40
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests was carried out to evaluate promoting consolidation of a porous concrete pile fabricated with recycled aggregates (RAPP) method for soft ground improvement. Performing the laboratory chamber tests for the RAPP, characteristics of the surface settlement with time and the consolidation time were compared with those of SCP and GCP provided by You (2009) under the same experimental condition. In addition, the experimental results were compared with the numerical analysis in this study. As a test result, the effects for settlement reduction in both the primary and the secondary consolidation and promoting consolidation by RAPP were prominent comparatively.

  • PDF