Purpose - Since COVID-19, the government's expansion of liquidity to stimulate the economy has resulted in an increase in private debt and an increase in asset prices of such as real estate and stocks. The recent sharp rise of the US Federal fund rate and tapering by the Fed have led to a fast rise in domestic interest rates, putting a heavy burden on the Korean economy, where the level of household debt is very high. Excessive household debt might have negative effects on the economy, such as shrinking consumption, economic recession, and deepening economic inequality. Therefore, now more than ever, it is necessary to identify the causes of the increase in household debt. Design/methodology/approach - Main methodology is regression analysis. Dependent variable is household loans from depository institutions. Independent variables are consumer price index, unemployment rate, household loan interest rate, housing sales price index, and composite stock price index. The sample periods are from 2017 to May 2022, comprising 72 months of data. The comparative analysis period before and after COVID-19 is from January 2017 to December 2019 for the pre-COVID-19 period, and from Jan 2020 to December 2022 for the post-COVID-19 period. Findings - Looking at the results of the regression analysis for the entire period, it was found that increases in the consumer price index, unemployment rate, and household loan interest rates decrease household loans, while increases in the housing sales price index increase household loans. Research implications or Originality - Household loans of depository institutions are mainly made up of high-credit and high-income borrowers with good repayment ability, so the risk of the financial system is low. As household loans are closely linked to the real estate market, the risk of household loan defaults may increase if real estate prices fall sharply.
Utilization of the aggregation concept applied in economics has been a traditional way of describing the state of an economic system and of predicting the future economic conditions. In addition, certain aggregate variables have also played a crucial role as indicators of the business cycle. Quick examples would be the price index, the productivity changes, the industrial production index, GNP, and so on. The methods of aggregation could be either simple summations, like GNP, or sophisticated weighted average, like the price index.
The recent increase of chonsei has raised the degree of lease burden of households, and a new residential lease price index needs to be introduced to measure such degree of lease burden. In order to convert the burden into an index, the calculation method of the K-HAI, which is announced by the Korea Housing Financing Corporation, is applied by replacing house purchase with lease. From the calculation, the residential lease prices index of the first quarter of 2014 is estimated to be approximately 114, indicating that the cost of lease exceeds 35% of income. The result of analysis on the trend of the residential lease prices index from the first quarter of 2012 to the present in Seoul indicates that the residential lease prices index in Seoul has continued to increase, compared to that of the entire country. The results of this study will be a foundation to find a solution for the stabilization of chonsei and investigate the degree of lease burden by region when establishing a sustainable housing policy.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1361-1369
/
2014
This research is for analyzing the change rate of housing rent price index produced by KAB (Korea Appraisal Board) in the monthly periodical, Survey on Housing Monthly Rent. The index is a very important and useful indicator to understand and diagnose the house rental market. However, the index is criticized in that it tends to decline when the price level of Jeonse (i.e., a typical type of dwellings in Korea, generally leased on a deposit basis for 1 or 2 years) is highly going up, which is inconsistent with the actual economic sentiment of tenants. We verify the reason why such phenomenon occurs and suggest a simple but novel method to analyze properly the change rate of the index. The main findings are as follows. The key factor to trigger the problem is the use of the conversion rate for Jeonse-to-monthly rent for constructing the rent price indexes. We separate the effect of the conversion rate out of the change rate of the index and quantify the adjusted real change rate showing an increase of the rent price level which is masked by the conversion rate before.
KOSPI 200 index options market has the highest trading volume in the global options markets. The risk and return structure of options contracts are very complex. Volatility complicates options trading because volatility plays a central role in options pricing process. This study develops a trading system for KOSPI 200 index options trading using KOSPI 200 volatility index. We design a database system to handle the complex options information such as price, volume, maturity, strike price, and volatility using Oracle DBMS. We then develop options trading strategies to test how the volatility index is related to the prices of complicated options trading strategies. Back test procedure is presented with PL/SQL of Oracle DBMS. We simulate the suggested trading system using historical data set of KOSPI 200 index options from December 2008 to April 2012.
Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.
Korean Journal of Construction Engineering and Management
/
v.5
no.6
s.22
/
pp.203-211
/
2004
This study is the results to survey on the problems and improvable Policies for current escalation system in construction contracts, through a Delphi survey to experts. From the survey results, it is desirable to decide the fluctuation rate of construction cost, which is the requirement of escalation clause, on the basis of inflation rate or construction cost index. The desirable price fluctuation rate is proposed as a $3\%$ level. However, it is difficult for construction companies to cope with the sudden increase of material price in advance, arising from short-term shock factors such as exchange rate and international raw material's price. Accordingly escalation system for specified materials, as an exceptional mode, should be introduced. As a method to calculate the fluctuation rate, ARCA(adjustment rate for the categories of articles) is more desirable than ARI(adjustment rate for an index), because the ARCA can be more reflected the characteristics of each construction work.To rationalize the ARI method, it is needed to announce the wage index, material index and machinery expense index via detailed classification by construction types. Also, it is desirable to prescribe the bidding date as a starting date of the price change, rather than contact signing date. considering the price change can happen since the biddiilg stage.
Since year 2000, French housing and rent prices rose at a rapid rate and the housing market has been overheated. Face to this phenomena, the French government enacted a new law Alur which is a legislatif tool to control the private housing rent price for the cities, where the tension of the housing market is very high. This new law has impacted the housing market in two major ways. First, for the 38 cities designated by this law, the rent price's increase rate can not rise above the IRL, which is the rent reference index. Secondly, this law also permits local authorities to control the housing rent's price following the concrete price guidance. Especially in Paris, the city applicated this method for private rental housing since 2015. This city classified its own area by 14 zones. Based on the market surveys of each sector, local authority made a guidance for private housing rent's price. The guideline is consisted of average prices, maxima and minima price by types, which is classified by the construction year, number of rooms and furnished or not. Therefore, this study aims to understand french housing rent's price control system and draw implementation for korean housing rent policies. This research is meaningful for it introduces recent foreign regislations which could be helpful to control the housing market in Korea.
The Journal of Asian Finance, Economics and Business
/
v.8
no.8
/
pp.399-407
/
2021
Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.
Korean Journal of Construction Engineering and Management
/
v.11
no.5
/
pp.41-52
/
2010
Even though REITs (Real Estate Investment Trusts) are listed on the stock market, REITs have characteristics that allow them to invest in real estate and financing for real estate development. Therefore REITs is related with stock market and construction business and real estate business. Using time-series analysis, this study analyzed REITs in relation to construction businesses, real estate businesses, and the stock market, and derived influence factor of REITs. We used the VAR (vector auto-regression) and the VECM (vector error correction model) for the time-series analysis. This study classified three steps in the analysis. First, we performed the time-series analysis between REITs and construction KOSPI(The Korea composite stock price index) and the result showed that construction KOSPI influenced REITs. Second, we analyzed the relationship between REITs and construction commencement area of the coincident construction composite index, office index and housing price index in real estate business indexes. REITs and the housing price index influence each other, although there is no causal relationship between them. Third, we analyzed the relationship between REITs and the construction permit area of the leading construction composite index. The construction permit area is influenced by REITs, although there is no causal relationship between these two indexes, REITs influenced the stock market and housing price indexes and the construction permit area of the leading composite index in construction businesses, but exerted a relatively small influence in construction starts coincident with the composite office indexes in this study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.