Control and Aggregation (I)

Sung-Shin Han*

Utilization of the aggregation concept applied in economics has been a trad-
itional way of describing the state of an economic system and of predicting
the future economic conditions. In addition, certain aggregate variables have
also played a crucial role as indicators of the business cycle. Quick examples
would be the price index, the productivity changes, the industrial production
index, GNP, and so on. The methods of aggregation could be either simple
summations, like GNP, or sophisticated weighted average, like the price index.
Aggregation could be applied to individuals, as in personal income, to com-
modities, as in price index, or over both of them, as in consumption expen-
uditre. Furthermore, monthly, quarterly, semiannual, and annual data deter-
mine the degree of aggregation over time. The size of the econometric mcdel
is dependent upon the degree of aggregation of both individuals and comm-
odities and the length of the lag structure is determined by the degree of
aggregation over time[5], The order (dimension) of the problem of analyzing
the model’s dynamic properties and of optimally controlling it is an increa-
sing function of its size and its length of lag structure of the model.

In general, the justification invoked for the use of aggregates is to secure
information on the micro-level, which cannot be analyzed without aggregation
due to formidable computational difficulties or unavailability of micro data.

As far as aggregation from the micro variables to the macro variables is

concerned, the methods of aggregation are based on a priori knowledge with
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theoretical considerations. If a priori knowledge asserts that some variables alw-
ays move together, they may be aggregated into a single variable, which will
be an appropriately weighted average of the original variables, as in the Hicks-
Lange criterion[ 11], With relation to this criterion, Ando-Simon[2 ] analyzed
the aggregation of variables in the so-called nearly completely decomposable
dynamic system. This system can be approximated by a single variable with
respact to each subsystem as if the whole system were completely decompo-
sable. In fact, it is impossible to derive, in a way which is free of contrad-
ictions, an aggregated macro-relationship of the usual type from given micro
economic theories. As Ando-Simon claimed, the conditions for exact aggreg-
ation are very severe. Heance, whether these conditions are strictly satisfied
In any practical situation is not really important since any model we employ
is n> more than an approximate description of reality. The aggregation prob-
lem should be dzalt with out of the sheer necessity and based on practicality
rather than validity. Therefore, as far as aggregation is concerned, we are
looking for heuristic rules and criteria which will yield satisfactory approxi-
mations under certain conditions.

For instance, we can consider th= following szuznce of findings in relation
to the idantification and estimation of th= structural macro-econometric model.
Suppoase that the restrictions on the structural parameters for identification in
a macro-economatric mddzl are bassd on th: micro structural model from
micro-economic thzory. Theil’s finding[17] of a relationship between the macro
and micro structural model indicates that the macro paramesters are weighted
sums of th2 paramcters of the underlying structural micro relations. The sum
of weights is 1 in the case of correspondence, 0 in case of noncorrespondence,
and ths weights are not independent of the micro parameters to be weighted,
and depend in general on all parameters of the entire micro system.

A subset of the miro-model, which doss not include at least one variable
included in the other subset, is to be aggregated into one macro equation.

Then the macro-parameters of the excluded variables are weighted sums of
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all the micro-parameters with the sum of weights being 0(which are supposed
to receive zero-restrictions in the macro-model). Clearly the sum of weights
being zero does not imply that the weighted sum is zero. We might assume
that the weighted sum is close to zero under the certain conditions. Fisher[7]
on this approximate restriction for the identification has shown that, if these
restrictions are approximately satisfied, the estimates of the structural param-
eters, obtained by the k-class estimators, are asymptotically consistent in the
limit.

So far we have discussed a justification of the usual practice in macro -
econometric model building. The conditions of the approximation can hardly
be checked in reality, but are simply assumed to be satisfied. We mentioned
before that the dimension of the model is determined by the degree of aggr-
egation. Even with such aggreation, many models are too large to be estimated
by the simultaneous estimation methods like 3SLS and FIML. Therefore,
they are usually estimated by OLS, 2SLS, or instrumental variable estimator,
because of the computational difficulties and degree of freedom problems.
The same problem happens in the control of a large-scale model in the sense
of computational difficulties. Even though a mathematical programming appr-
oach might be useful in the case of short-time horizon, the number of instr-
uments in such an approach increases in proportion to the time horizon[6, 107,

Therefore, this chapter discusses the further aggregation of the given model
in order to reduce the dimensions of the model to manipulable size. Ando-
Simon[2] did not fail to indicate this possibility and termed it a multi-level
hierarchical aggregation. Thus we can consider the construction of the macro-
econometric model as an aggregation by the first-level hierarchy. Now we
shall discuss second level hierarchy in this paper. For simple analysis without
confusing the main idea, the first level aggregation is assumed to be exactly
true without aggregation error. As in the case of micro-macro relationship,
there is no absolute criterion except for a special case such as the complete

block diagonal coefficient matrix. But the heuristic criteria are to be investi-
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gated. This paper considers the deterministic econometric model without error
terms, for the stochastic model with additive error terms and the determi-
nistic model do not make any difference in the sense of control rule by the
certainty equivalence principle. However, this paper does not consider the
econometric model with the stochastic coefficients.

This paper consists of six sections. The first section describes the canonical
representation of a dynamic econometric model, which would be a good
criterion for satisfactory aggregation and would play a role similar to principal
component analysis in estimation theory. Section 2 defines an aggregation
matrix for the later convenient analysis and demonstrates the dynamic behavior
of an aggregated model to derive the propagation of errors due to aggregation.
Section 3 investigates several possible aggregations of the model, with exam-
ples in the case where the aggregation matrix can be determined a priori.
Section 4 demonstrates the approximate determination of an aggregation matrix
using a priori knowledge, as in Ando-Simon’s near decomposability. Section
5 analyzes the role of the aggregative model in control and the effect of the
control rule of the aggregative model on the disaggregative model as a stab-
ilization policy. Section 6 summarizes the results briefly and suggests future

research areas for control of the large-scale models.

1. Canonical Representation of Dynamic Econometric Model

Let the econometric model given in the state-variable form,
(1.1) yy=A Yy, +B x:
nx1l axXn axl nxm mx1
where g, and x; are the endogenous variables and the instruments, respectively.
Two kinds of canonical representations are discussed, (1) on the endogenous
variable space, and (2) on the instrument space. The former is useful for the
next three sections and the latter for the later sections. We begin by descri-

bing a canonical representation in the endogenous variable space.

Without loss of generality, suppose the matrix A has n distinct characteristic
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roots without multiplicity. Then
(1.2) A=PAP!
where 4 and P are diagonal matrix and the matrix of the characteristic

vectors. Another useful form of equation (1.2) from simple matrix manipu-

lation is
(1.3) A=§1 Aipiqi
where P=(p;, Ps,***,Piy*+,Pn) for column vector p;

(Iﬂ

q:

P-1=Q=| : | for row vector g;

qi

qn
and A; is the ith diagonal element of the diagonal matrix 4. Let
(1.4) Zi=P1' y;

nxl axn nxl
Then equation (1,1) can be rewritten as
(1.5) Z:=AZ,_ ,+Dx:
where D-.2"18
Now let us consider the second kind of canonical form on the instrument
space[ 127, To derive this, it is assumed that the condition of controllability
holds, or

(1.6) r ={B,AB,A’B,---,A""1B} has rank zn.
nX (nm)

Furthermore, controllability index » is defined as the smallest positive integer
for which the matrix

(.7 I, ={B,AB,A’B,---,A*"'B}
nx (mv)

has ‘rank n, such that v<{n. Without loss of generality, the column vectors b,
of B are linearly independent and m<(n. Then it is possible to define matrix
S of the form,

(1.8) S={by,Aby, +++, A*"1by, by, Aby, <+, AV by, -+, A?~"1b,}  which has rank =n
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such that »;<{v (See Luenberger[12] for the proof). By the change of the
columns,
(1.9) S={by,bs,++,bm, Aby, Aby, -+, A?="1b,}
As in the first case, taking the similarity transformation does not change the
dynamic property of the econometric model. We can transform in the follo-
wing manner,
(1.10) Z:=S"y:
Then

Z:=AZ. ,+Bx.

where A=S8-148
and B=S"B
Let

(1.12) S‘lz(eil

J where ¢; is a row vector

_€n
Then
m
- I m
(1.13) B:S‘lB:E}
0 n—m

because S7'S=1 and the matrix § is a nonsingular square matrix.

2, Aggregation

Before considering dynamic aggregation methods, the general algebra on
the aggregation matrix (which is defined in this section), and the dynamic
properties of the aggregated model should be discussed. The last section, in
some sense, considers an exact aggregation. In the other words, the exact
aggregation implies that there exists a unique inverse transformation by an
equivalence transformation which does not change the whole set of charact-
eristic roots or the dynamic behavior of the model. As for aggregation in
the usual meaning, equivalence does not hold, but dynamic behavior can be
approximated to a certain degree for the purpose of computational and anal-

ytical convenience. For this purpose the aggregation matrix does not have to
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be a square matrix like the matrix S or P in the canonical. representation,
but could rather be a rectangular matrix whose number of columns is larger
than that of rows. The original model could, thus,be reduced to an aggreg-
ative model with less dimension.

(Definition) Aggregation of the dynamic model can be defined as the
transformation of the n-dimensional endogenous variable vector into the
I-dimensional vector such that [ is less than ».V

Thus we can define the aggregation matrix C as

@n Z=C y: where [<n.
IX1Ixnnxl

Suppose the dynamics of the Z-vector be constructed as

(2.2) Z,=FZ: ,+DX:

The premultiplying C in equation(l. 1),

(2.3) Cy:=CAy:_,+CBx;

Comparing equations (2.2) and (2.3), the following equation should hold,
(2.4) CA=FC

(2.5) CB=D

To investigate the dynamic behavior of the equation (2.2), the following
theorem on the matrix equation (2.4) would be useful.

(Theorem 1) The matrix A and F of equation (2.4) have common char-
acteristic roots if and only if there exists a nontrivial aggregation matrix C.
(Proof) (necessity)[ 9]

Let A=UA,U ! and F=VA:V"1
where A, and Ar are diagonal. Then

CUAU=VAVIC, or VICUAr=A:V"ICU.
Then the equation,

CAs—4:C, where C=V-1CU,
defines I xn linear equation system, or (As—Ar;)Cii=0

If Au=FAr; for all i and j, C;;=0.

1) This definition is similar to that of minimal-order observer. See; Aoki, M., Optimization of
Stochastic Systems, Academic Press, 1967 (pp. 250-265).
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Therefore C=VCU-! must be equal to zero matrix.
If A4=2r; for some i,j, Cj could be assigned an arbitrary non-zero number.
With such construction, C will be non-zero. As an alternative proof, let us
consider the characteristic polynomials,

|AI— Al =@4(A) : n-degree
and |[AI—F|=¢z(A) : l-degree
where |.| denotes determinant.
If there is no common root A, #4(2) will generate n-dimensional subspace I,
of R**! and ¢r(1) [-dimensional subspace I, of R»*!. Furthermore I, and
I: have the common null vector, so that R#**!=J,+I,. Therefore I, and I
are mutually independent subspaces, so there does not exist any common
vector except for the null vector.

(Sufficiency) Suppose the characteristic roots of 4 be 1;,+++,1, and the corr-
esponding characteristic vectors uy,uy,+-+,u,. Choose Cu,0 and there neces-
sarily exists such u..

Then CAu;=C2:lu;
=2ACu;=FCu;
Therefore (F—A;)Cu;=0 q.e.d. -

Furthermore we have to note that, if the matrix C consists of / indepen-
dent row vectors, the matrices A and F have exactly the ! common chara-
cteristic roots. To study the validity of the aggregation, dynamic behavior of
the aggregation error will be discussed.

Let the aggregation error be
(2.6) e=Z:—Cy:

Then e;=FZ: ,+Gx:—CAy:_,—CBx:
=F(e:.y+Cy:_y) —CAy:
=Fe:,+(FC—CA)y:_,

Therefore the solution form of e: will be

t
(2. 7) et:Fteo_";F'—f(FC_CA)yr-l
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In the macro-model building, it cannot be expected that FC =CA, because
matrix A of the micro-model is unknown and coefficient matrix F is estim-
ated statistically. Under these circumstances, we need a constant adjustment
procedure, even though the aggregation variable z is well defined at the
initial stage, i.e., e,=0, because of the second term in equation(2. 7). Fur-
thermore, if the underlying model is unstable, the prediction bias will blow
up because of y._, in equation(2.7). Therefore, when the aggregated model
is used for the purpose of forecasting, we have to be very careful. Even if
the underlying model is stable, long-run prediction would not be recommended
except in a special case such as Ando-Simon’s nearly complete decomposability
condition of the matrix 4 [2]. (This point will be discussed later in detail.)
As far as stabilization policy is concerned, the situation is a little bit different.
Suppose the planner uses the aggregated model (2.2) for the long-run policy
and compute the feedback equation of Chapter II.
(2.8) xt=—GZ:_;—g:

=—GCY:-1—g:

The existence of stabilization policy depends upon the characteristic roots
of kA—-BG’C) where the matrix G is a function of matrices F and D. How-
ever, the error, e;, will affect g: which is a function of the linear quadratic
tracking equation. Therefore as in the case of forecasting with the aggregative
model, we need a fine-tuning procedure on the vector, g;, of the linear feed-
back equation (2,8) at every point of time. This can be done by recalcul-
ation of the linear quadratic tracking equation, only if the maximum absolute
eigenvalues of (A—BGC) is less than 1. (This point will be investigated in

Section 5 in detail.)

3. Some Examples of Aggregation

The construction of the aggregated model for computational convenience
and analysis depends upon the matrices C and F. If matrix F is given expl-

icity, matrix C could be derived from the Theorem 1, But in reality, matrix
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F is not known and is to be constructed to have some desired qualitative
aspects which directly depend upon the construction of the aggregation matrix
C. Thus this section studies the construction of matrix F with some qualit-
ative aspects which will be determined by the planner. For the purpose of
illustration, three examples will be taken: (1) possession of the subset of char-
acteristic roots of the original model, (2) possession of the largest moduli of
characteristic roots, and (3) possession of the subset of characteristic roots
with a restriction on the representation of endogenous variables.

(Example 1) Suppose the row vectors, C; of matrix C are mutually orthog-
onal. This is the case of the usual definition of the aggregated variables in
macro-economics like durable consumption, nondurable consumption, plant-
equipment investment, housing investment and so on, which are the summ-

ation of each group without overlap. Let

G. D CiC;i/=0 if i=+j
=R; if i=§

Suppose the matrix F have the following form,
!

(3.2) F=.§;{iﬁiéi

where p; and ¢; are /-dimensional column and row vector and A; is a subset
of characteristic roots of the original model in equation (1.3), Then p; and

¢; can be constructed from equation (1,3) as

(3.3) bi;i=C;p:

(3.4) 4;;=q.C;/R; Li=1, 001
where pi= (ﬁi1;"',‘f;ii»""ﬁkl)'

and G51= (i 830"+ 010)

The above can be derived as

(3.5) F=cAc’'(cc)?

when C;-p;=0 where j=1,-.-,l and i=/{+1,--:,n

(Example 2) Without loss of generality, the diagonal matrix, /4, of the equ-
ation (1.2) assumes to be arranged in the order of the largest characteristic

root in the absolute value.
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Defining

a;
(3.6) C:[ :J
q

we can construct the aggregated model as
3.7 Ziw=AiZi_+Dx:
where i=1, 0,1l

By the same reasoning as example 1, we can construct the C matrix such that
C 1 (Pisy,+++Px) where ‘1’ denotes ‘orthogonal to’, and the matrix F can be
computed by equation (3.5), though, in this case, the coefficient matrix of
lagged aggregated endogenous variables is not diagonal as in equation (3.7).
(Example 3)[4]

Aggregation via characteristic vectors may have the subset of characteristic
roots of the original model, but the basic problem is that the aggregated
variable cannot be interpreted in economic meaning. Thus this example con-
siders the partitioning of the endogenous variables to have economic meaning.

In other words, partitioning the endogenous vector as

l
(3. 8) yt___{jylt1
Yol n—1
we want to construct the model as
(3 9) y1t=Fy1,t_1+DX¢

with the characteristic roots of F being a subset of characteristic roots of
matrix A. Clearly this is a further restriction of the example 1 or example
2. Equation (3.9) might not be suitable to the purpose of forecasting because
it depends upon the contribution of the omitted variables, yz: in the equation
(3.9). In the case of policy analysis, accurate calculation of the dynamic
multiplier is most important. If we could approximate the dynamic multiplier
with fairly good accuracy, policy analysis could be carried out approximately.
This example tries to approximate the dynamic multiplier with the similar
technique of example 1 and example 2, In equation(l. 1), the dynamic mul-

tiplier would be governed by the following equation,
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(3. 10) dy:=Ady. -+ Bdx,,
Adx:=x:—x:, and dy,=y.—y;
where “” denotes the nominal path and Ay, indicates the increment due to
dx;.
Then the solution form will be
G.11) dyi= rgiA"’BAx.

Without loss of generality, let dx.=1 for simplicity and define
t
(3.12) M=% A"B.
Equation (3.12) can be rewritten from equation (I.3) as

t n
(3.13) M=2(2%""Pq)B

where p; and g; are normalized as p/p;=gq.q/’ =1. Changing the summation sign

in equation(3. 13),
n t
(3.14) M:‘—_gl: (Tgxi‘"’)piql‘B

—y A=l
_i=zl: Ai—1 pig:B

To get the form of equation(3.9) with the first [ characteristic roots, equation

(3. 14) should have the form as

N A P ot b,
(3.15) where M=73 =1 | @) |
=1 A pui b

P = (prir 1 p1iy*+, fni),

qi=(qil;"'yqil;"';qin);

and B'=(by,++,bi,-++,b,)’,

b; : mx1 row vector

The matrix representation of equation (3.15) will be

(3. 16) MzPu A*QuB,
Pyl Pyl
where P=|:. 11!l - 12
[le l Pzz} n—I
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" @u ’ Q!
Q=P =] e J
_ Qo l Qz J n—!
I n—I
B, 1!
B=| e
B, | n—!
m
and N = ——mM — 0 0
A—1
< A—1
0 0
Ai—1
LAt—1
0 0 _—
. a—1

To derive the form of equation (3.10) from the approximated dynamic
multiplier matrix, M, equation (3.16) can be rewritten, using the similar

transformation technique, as

(3.17) M=Pu/A*P;," P,Qu B,
=3 F=D

where F=PA4,P;?
and D=Puluby

A 0 0’]

A=l0" 2 o
0 RzJ
Then we can construct the dynamic multiplier equation like equation(3. 10) as

(3.18) dy=F4y,:_,+Ddx:

In the more convenient form of matrix F, the following matrix identity will
be useful.
(Theorem 2)
F=P; A, Pyt
=An+A4,Py Pyt
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Ap | A )l
where A=| ] S
Azl ’ A22 n—I1

(Proof)
PPy =Py (QuP1i+Q1:Poy) Pyt
+ P12 (Q21 P11+ Q22 Pyy) Pyt
C.QP=I)
=P 4,Qu+ P12 4,Q5
+ (PuiQra+ P124,Q20) Py Pyt
=An+ A1, Py Pyt
(."A=PAQ, which implies
An=PuMQn+ P, 4,Q, and
A= P 41Q12+ P12 4,Q52) q.e.d.
This example might be useful when the target variable, which is included in
the partitioned endogenous vector of y;, Y1, is a subset of the whole endog-
enous vector.

The above three examples do not have the explicit criterion function as a
criterion of aggregation, but assume that the possession of a subset of chara-
cteristic values would be desirable for the approximation of dynamic behavior
of the model.

Example 4 minimizes the aggregation error under the quadratic criteria.
(Example 4)[8]

Before discussing the aggregation, consider the following theorem by W.
Fisher,

(Theorem 3) Given a matrix A4 of rank n, the matrix F of rank ! that minimizes
(3.19) L=tr(F—A)' (F—A) is

(3.20) F=R,’R,A where R, is the IXn matrix whose rows are the norma-
lized characteristic vectors associated with the ! largest characteristic roots of
the matrix AA’.

(Proof) See Walter D. Fisher[8],
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Note F is the nxn matrix with rank /. Premultiplying R; in the equation
(3. 20),
(3.21) R, F=R,A
because the positive definite symmetric matrix, AA’, has orthogonal charac-
teristic vectors and can normalize as R\ R)'=1L

Taking R, as an aggregation matrix,

(3.22) F R,=R,F=R\A.
Ixl Ixn

Postmultiplying R,’ in the equation (3.22)

(3.23) F=R,AR/.
Ixl
Therefore, the aggregated model will be
(3.24) Z=F Z:.,+D x:
Ix1IxlIx1iIxmmxl
where Z:=Ry:_, and D=R, B.

So far we have discussed aggregation by the characteristic vector, with several
examples, which preserve the subset of the characteristic values. In reality,
the characteristic vector is generally unknown. Therefore the above mentioned
examples might be a criterion to keep in mind for the purpose of large-scale
model control design, but may not be useful for the computational purposes
in reality. More often than not, the aggregation matrix C, which is row-full
rank, may be determined by the planner’s a priori knowledge. The least square
solution of the equation (2.4) can be considered, which implies a pseudo-
inverse solution. In other words,
(3.25) F=CAC*
where cr=c'(cen)t
Clearly equation (3.25) is much more practical than the above examples
where matrix C has been chosen to be orthogonal to some of characteristic
vectors, and to get the form of equation (3.25) or (3.5).

When matrix € is determined a priori, we cannot expect that the rows of

C and the characteristic vector of A4 are orthogonal, but equation(3. 25) has
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its meaning in the sense of the least square solution. Thus the next section

discusses aggregation under a certain class of a priori knowledge, or the nearly
complete decomposability of the matrix.

4. Control on the Nearly Completely Decomposable System

At first, Ando-Simon’s nearly completely decomposable system is reviewed
briefly for its application to the control. Consider the autonomous system

(for example, the Leontief matrix in the growth model),

(4. 1) yu =4 y:.,

nxXl axnnxl

The question on the aggregation of the model (4.1) will be, as in the last
sections,

4.2) Z: =F Z._,
Ix1iIxl Ix1
where Z,=C y;
Ixn

Let us assume that the matrix may be represented by
(4.3) A=A*+eAd,

A*; 0 0
where A*= 0 A* 0

0 0 A%

!
A*: is n;Xn; matrix such that 3 n;=n

i=1
€ is a very small real number, and Ay is an arbitrary matrix of the same
dimension as A*. Ando-Simon referred to matrices such as A as nearly dec-
omposable matrices. Let us consider the following decomposition of 4 and
A*, if nonsingular,
(4.4) A=PAP!
(4.5) A*=P*A*p*-1

Furthermore, note that
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(4.5) lsifrolP (e)=P*
4.7) I:gl A(e)=4A*

P(e) andA(e) is a continuous function of & and
4.8) | P(e)—P* || <81(e)
and
(4.9) | A(e) —4* || <d2(e)

where ||« | denotes a norm of maximum absolute value. Under these circ-
umstances and with a sufficiently small e, Ando-Simon have shown that[1] in
some finite time, 7, or in the short-run, we may treat the system (4.1) as
though it consists of / independent subsystems and[2] in the long-run, we may
look at our system as a set of relations among ! aggregative variables, igno-
ring the relations within each of the subsystems. We have to note that in
this case calculation of the aggregation matrix is much easier than in the
examples of aggregation of Section 3. We don’t have to compute the chara-
cteristic vectors of the whole matrix 4 but of the block diagonal matrix 4%,
which can be computed by calculation of the characteristic vector of each
subsystem A;*. Though this scheme is an approximate solution depending on
¢, the aggregation matrix € would consist of orthogonal row vectors. Speci-
fically, the aggregation matrix has the form,

FCyee 0+ 0

(4. 10) C=| 6.Cs 0
IXn| : :
0]
where C; 1s an 1Xxn; row vector.
Here another class of a priori information is to be considered. Suppose the

planner could rearrange the matrix A by the row-column simultaneous perm-

utation as
(4.1 A=pPAP!?
A 0
A
where A= ‘. y A 2] > > | Aa]
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The matrix can be partitioned as

( All l AIZ 1 l

(4.12) A= 2L J

L A21 ’ Agz. ﬂ—l
I n-=l

Suppose matrix A is nearly decomposable, in which A,, and A,; are suff-

iciently small. Furthermore, consider the similar transformation of matrix A as

(4. 13) A proigp f/ll* P* 1 4, P,*
. LPZ*-I Az Pi* A*
l n—|
h A* A11 0 ;r_Pl* .A]_* Pl*.—l 0
wihere = =
10 Az ] | 0 Py* A* Py*t
r—Pl* 0
P*=
L0 P

and A;* and A;* are diagonal matrices whose diagonal elements are charact-
eristic roots of A;; and A,,.
Milne[15] has defined the similarly transformed matrix A as ‘weakly

coupled’, if

[A1sq]
(4.14) Ll <t

krd
(4.15) -W<1

where % is min (/,n—[), r is a maximum element of P;*~14,,P*, in absolute
value and ¢ is a maximum element of P,*"14,,P,* in absolute value. Furt-
hermore, the characteristic roots of A, A, can be approximated by
(4.16) Si(A)=det(AT—-4,*)=¢
(4.17) Jo(A)=det(AT—A* + P,* 14, P * A, * P * 14, P,*) =0
where det (+) denotes determinant.

In fact, conditions (4.14) and (4.15) can be checked by computation of
the characteristic roots of the whole matrix A, which, on the contrary, is
impractical for the purpose of analysis in this chapter. For this position,

Milne has derived the necessary condition for conditions (4. 14) and (4. 15) as

(4.18) ——<1
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where r denotes the minimum absolute root of the characteristic equation,
F1(2), in equation (4.16) and R denotes the maximum absolute root of the
characteristic equation, f,(1), in equation (4.17). In order to interpret this
necessary condition for conditions (4.14) and (4.15) in the original matrix
A, equations (4.16) and (4.17) can be rewritten as
(4.19) , f1(AD) =det(AI— A1) =0
(4. 20) f2(A) =det(AT— Azp+ An Ay 1A) =0
because A;* and (A*—Py* 1A P *A,* 1P * 14, Pp*) can be similarly tran-
sformed into Ay, and A, — A A ~'Ar.. Therefore, equation (4.1) can be
separated into two different subsystems which have equations(4. 19) and(4. 20)

as a characteristic equation,

(4.21) Yr=AuYit-1+ Vit
Ix1
(4.22) Y= (Azz—AmAu—lAlz) Yaor-1+ Vo
(n—1)x 1
where Vii=Apls
and Vo=Apyt-1+ A1 A1 A1l 1

=AnAn Y

and then Vj: and ¥, can be treated as exogenous variables. Clearly the acc-
uracy of two segregated subsystems, (4.21) and (4.22) depends upon the
accuracy of the prediction of the exogenized variables Vy: and V,. Now let
us consider a weakly coupled structural econometric model. The econometri-
cian more frequently encountered with the structural model rather than the
reduced form, a large-scale structural model being as well difficult to trans-
form into the derived reduced form. Suppose the structural econometric model
is given by

(4.23) A=Ay 1+9(@)

where g(#) includes the exogenous variables, or in partitioned form,

- -

(4.23)’ l {Awu Ag, 12}{ Yt 1 I TAyuun A JI‘ Yit-1 u_[gl(t) J

Agyz1 Aorzz yth n—l _Ay,0 Ay Lyzt—lj‘ L2t
{ n—I! [ n—I

n—I

Let
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A A,
(4.24) Ao_lz[ J
A021 A022
and
(4 25) A A IA |iA011 Al’ 11+A012A1,21 .AO11 Alr 12_'_.14012 Al,zz ]
: =Ay A=
A021 A1,11+A022 A1’21 A021 A1’12+A022 A1,22

Analogously we could evaluate f;(1) and f,(1) of equation (4. 19) and equa-

tion (4.20). Particularly we are interested in J1(2) which would include the

largest I characteristic roots approximately and J1(2) has the rather simple

form of

(4. 26) S (2) =[AI— (A4, 1+ A¢245,21) | =0

with appropriate conditions like (4.14) and (4.15). From the partitioned

matrix inverse, equaton (4.26) can be rewritten as

(4.27) J1(A) =12(40,11— Ay 124720, 22A0,21)
—(Ap11—Ao1247,2241,21) | =02

The model with the same characteristic roots as JS1(D)will be

(4. 28) (Agy11—Ag12 A %022 Ag21) Y
Ix1
=(Apu—Ap1247,2241,21) Yrea
Ix1
+ Vi

where Vy; is a function of y,,_; and g(¢#) and the coefficient of y,_; in Vi
is (Al,12—A0,12A’10,22A1,22). From equation (4.28), we could infer that a
structural econometric model with a distributed lag structure can be simplified

In an analogous way. Suppose the distributed lag structural econometric model

is given by

(4.29) AL)ye=g(0)

where A(L)=A+ A, L4+ AgLX
and L denotes a lag operator.

Let A(L) be partitioned by

2) f2(4) can be constructed in a similar way to the equation (4. 20) and the necessary condition
for the weak coupling, (4.18), will also hold with respect to f1(2) and f2(4).
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An(L) AIZ(L>—1

(4.30) A(L) =[
Au(L) As(L)J

Then the simplified model will be
(4.31) {A11(L) =AY, 1240, 20401 (D)} y1:= Ve
So far we have discussed the simplification of the model by Ando-Simon’s
nearly completely decomposable system and Milne’s weakly coupled system.
The former requires a priori knowledge of the sufficiently smallness condition
of the interaction term between subsystems of the off-diagonal blocks in the
coefficient matrix of the lagged endogenous variables of the reduced form.
The latter requires a subsystem to dominate other subsystem in the sense of
characteristic roots in addition to the sufficiently smallness condition on the
interaction term. Though the distributed lag model might be analyzed in a
similar way and the dominating subsystem can be constructed by equation
(4.31), it is very hard to determine the conditions for weak coupling or nearly
complete decomposability. This is so because the off-diagonal blocks (interac-
tions) are described by the polynomial with respect to the lag operator L
rather than by constant coefficients in case of the first-order system.
A similar problem arises when the formulation of equation (4. 1) includes the
instrument variables, for control of the econometric model can be interpreted
as a procedure of endogenization of controllable exogeous variables by the
same criteria. This is described as a loss function or a welfare function and
as such the interpretation implies that the coefficient matrix of the inst-
ruments should receive the foregoing analysis, even though in somewhat
different form. As a counterpart of equation (4.1) we can rewrite the
equation (1,2) as
4.1 y:=Ay:_ .+ Bx:
W bl O
or = + Xt
Yo n—1 C Ay Agpp )Yz ) n—I B,
{ n—! m

The solution form will be
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(Y rAp A1 ' Yo + [ An Alﬂ i—7 ( B W
e [ Tl
L Yzt L Apr Az Yzo LAy Az L Bz
So far we have discussed about first part (autonomous part) of the deco-
mposition of the system. This argument may not hold for the system of
(4.1)” because the second part includes matrix B by multiplication.

For this purpose, let us consider the second form of the canonical repres-

entation (1, 11) and then the solution for be

. .. .. (I
Z: | [Ay Awe) 1] Zy —l t [An Alg“l——Z'\l 0 | x:
(4.35) . R I S
' Zy: CAx As Z, | = Az Asy ) .0
[ n—I I n—I
where Z:=S8'y, A=S"'AS, and S! B :(g), assuming / is grea-

nxn axm
ter than m without loss of generality.

With the canonical representation of equation (4.35), sufficient smallness
of the off-diagonal blocks, A;, and A,, of the deccmpositicn satisfies the
first part and the second part at the same time. The foregoing znalysis also
depends on the choice of matrix S. Indeed, it is not easy to choose the
appropriate S~ to get the off-dizgcnal block sufficiently small and to be
orthogonal to thé column vectors of matrix B. Furthermore, the choices of
matrix S-1! orthogohal to the column vectors of matrix B is infinite because
S can be constructed by arbitrary (n—m) linearly independent column vect-
ors and m linearly independent column vectors of matrix B. If matrix § is

constructed by

m
m (B; O
(4. 36) S= [
n—m Bg I
mn—m

and the similar transformation of matrix A by such S satisfy the sufficient
smallness of the off-diagonal blocks in the equation (4. 35), the eonstruction

of equation (4.35) is not too difficult because S~! can be computed simply

by
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(4.37) si= "7 }
n—m —BzBl-l I

m n—m
which requires the inversion of mxm matrix expected to be fairly small
enough. At any rate there is no clear-cut method for the choice of matrix S,
while the S of (4.36) and (4.37) is simply for computational consideration,.
When the matrices A and B are polynomials with respect to the lag operator,
analysis is much more difficult. Thus, for practical application, multiplier
calculation would give much better insight for decomposition of the system.
In fact, this might be the only way for a large-scale nonlinear model. To

see this point, let us consider the most general model as

(4. 38) y: = A(L) y:-1+B(L) x:
o nxl nxn naxlaxmmxl

where A=A+ A, L+--+ A, L1

and ) : B(L):Bo+B1L+“'+Bqu

Then explicit expressions for the matrices of impact and interim multipliers
are_given by[3]

(4. 39) for impact multipliers: B,
nxm

for first period multipliers: B,+M(1)B,
for second period mulﬁpliers: B2+M(ljBl+M(2)_Bo‘

for.qth period_multipliers: Z,q" M(‘Z')Ba.—“' |
=0

for g-+1th . period multipliers: é:o M(z+1)Bq-x
where
(4.40) M(DH)=AM(E—1D)+AME-2)+-+A,M(—0)
nxm » |
:;1 AM(E—1)
M($)=I when t=0
and M(?)=0 when t<0
We have to note that the matrix M(¢) determines internal dynamics and

expression (4, 39) determines the effect of the endogenous variables by inst-
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rument dynamics which is a composite function of internal and external

dynamics. From (4.39) and (4.40) it is clear that multiplier calculation of

p—+q periods would at least give good insight into the probability of decom-

position of the model, without the canonical representation of the second

form(1. 11),
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