• Title/Summary/Keyword: Price index

Search Result 802, Processing Time 0.026 seconds

Asymmetric Impacts of Oil Price Uncertainty on Industrial Stock Market -A Quantile Regression Approach - (분위수회귀분석을 이용한 유가 변동성에 대한 산업별 주식시장의 이질적 반응 분석)

  • Joo, Young-Chan;Park, Sung-Yong
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.1-19
    • /
    • 2019
  • This paper investigates the asymmetric effects of crude oil price uncertainty on industrial stock returns under different market conditions (bearish and bullish stock markets). We consider a quantile regression method using monthly oil volatility index, KOSPI and 22 industrial stock indices from May 2007 to February 2019. Especially, we take care of the positive and negative changes of the oil volatility index to analyze asymmetric effects of the oil price uncertainty for the bearish and bullish stock market conditions. During the bearish markets, the oil volatility index has relatively strong statistically significant negative effects on the industrial stock returns. These effects gradually decrease when the market conditions became more bullish markets. In particular, positive changes in the oil volatility index yields a further significant decrease in 12 industrial stock returns during the extreme bearish markets. Moreover, during the bullish markets, negative changes in the oil volatility index have statistically significant negative effects on the 12 industrial stock returns. From the empirical results, we see that participants of the Korean stock market are sensitive to bad news in a recession.

The Application of Fuzzy Delphi Method in Forecasting of the price index of stocks (주가지수의 예측에 있어 Fuzzy Delphi 방법의 적용)

  • 김태호;강경식;김창은;박윤선;현광남
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.111-117
    • /
    • 1992
  • In the stock marketing. investor needs speedy and accurate decision making for the investment. A stock exchange index provides the important index of the early of 1993 in Korea using Fuzzy Delphi Method(F. D. M) which is widely used to a mid and long range forecasting in decision making problem. In the Fuzzy Delphi method, considerably qualified experts an first requested to give their opinion seperately and without intercommunication. The forecasting data of experts consist of Triangular Fuzzy Number (T.F.N) which represents the pessimistic, moderate, and optimistic forecast of a stock exchange index. A statistical analysis and dissemblance index are then made of these subject data. These new information are then transmitted to the experts once again, and the process of reestimation is continued until the process converges to a reasonable stable forecast of stock exchange index. The goal of this research is to forecast the stock exchange index using F.D.M. in which subjective data of experts are transformed into quasi -objective data index by some statistical analysis and fuzzy operations. (a) A long range forecasting problem must be considered as an uncertain but not random problem. The direct use of fuzzy numbers and fuzzy methods seems to be more compatible and well suited. (b) The experts use their individual competency and subjectivity and this is the very reason why we propose the use of fuzzy concepts. (c) If you ask an expert the following question: Consider the forecasting of the price index of stocks in the near future. This experts wi11 certainly be more comfortable giving an answer to this question using three types of values: the maximum value, the proper value, and the minimum value rather than an answer in terms of the probability.

  • PDF

A Study on the Relationship between Food Index and Consumer's Awareness in Northeast Asian Sea Region (동북아해역의 먹거리지수 수준과 소비자 인식간의 관계에 대한 연구)

  • Yang, Min-Ho;Kim, Joon-Hwan
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.113-119
    • /
    • 2020
  • This study analyzed the relationship between consumers' awareness of marine products and the food index level, which is a sub-domain of the Pukyong Maritime Index. Specifically, the evaluation of marine products by Korean consumers verified the relationship between taste, nutrition, diversity, price, and safety-related systems and the food index. The analysis results were as follows. First, it was found that consumers' awareness of marine products had a significant positive correlation with the food index. Second, as a result of the regression analysis, the food index had an effect on the order of nutrition, taste, and price. These findings are required to understand consumers' awareness of aquatic products, and the food index can be used as the center of northeast asia sea region to provide a framework for improving consumer's satisfaction.

Study on the factors that affect the fluctuations in the price of real estate for a digital economy (디지털 경제에 부동산 가격의 변동에 영향을 주는 요인에 관한 연구)

  • Choi, Jeong-Il;Lee, Ok-Dong
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.59-70
    • /
    • 2013
  • As people invest most of their asset in real estate, there is high interest in changing in housing and real estate prices in the future for a digital economy. Various variables are affecting the housing and real estate market. Among them, four variables : households, productive population, interest rate and index price are chosen and analyzed representatively. This study is aimed to build decision model of apartment prices in Seoul empirically. From the analysis result the stock index is the only variable which is significant statistically to apartments in Seoul. From this study, the households and productive population show the same direction as shown in the previous studies before but not significant statistically. Among the independent variables, the stock index is chosen as a major variable of determinant of Seoul apartment price. From the result of the research, prediction of stock market should be preceded to forecast the movement of housing and real estate market in the future.

Are Business Cycles in the Fashion Industry Affected by the News? -An ARIMAX Time Series Correlation Analysis between the KOSPI Index for Textile & Wearing Apparel and Media Agendas- (패션산업의 경기변동은 뉴스의 영향을 받는가? -섬유의복 KOSPI와 미디어 의제의 ARIMAX 시계열 상관관계 분석-)

  • Hyojung Kim;Minjung Park
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.5
    • /
    • pp.779-803
    • /
    • 2023
  • The growth of digital news media and the stock price index has resulted in economic fluctuations in the fashion industry. This study examines the impact of fashion industry news and macroeconomic changes on the Textile & Wearing Apparel KOSPI over the past five years. An auto-regressive integrated moving average exogenous time series model was conducted using the fashion industry stock market index, the news topic index, and macro-economic indicators. The results indicated the topics of "Cosmetic business expansion" and "Digital innovation" impacted the Textile & Wearing Apparel KOSPI after one week, and the topics of "Pop-up store," "Entry into the Chinese fashion market," and "Fashion week and trade show" affected it after two weeks. Moreover, the topics of "Cosmetic business expansion" and "Entry into the Chinese fashion market" were statistically significant in the macroeconomic environment. Regarding the effect relation of Textile & Wearing Apparel KOSPI, "Cosmetic business expansion," "Entry into the Chinese fashion market," and consumer price fluctuation showed negative effects, while the private consumption change rate, producer price fluctuation, and unemployment change rate had positive effects. This study analyzes the impact of media framing on fashion industry business cycles and provides practical insights into managing stock market risk for fashion companies.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

In-Sample and Out-of-Sample Predictability of Cryptocurrency Returns

  • Kyungjin Park;Hojin Lee
    • East Asian Economic Review
    • /
    • v.27 no.3
    • /
    • pp.213-242
    • /
    • 2023
  • This paper investigates whether the price of cryptocurrency is determined by the US dollar index, the price of investment assets such gold and oil, and the implied volatility of the KOSPI. Overall, the returns on cryptocurrencies are best predicted by the trading volume of the cryptocurrency both in-sample and out-of-sample. The estimates of gold and the dollar index are negative in the return prediction, though they are not significant. The dollar index, gold, and the cryptocurrencies seem to share characteristics which hedging instruments have in common. When investors take notice of the imminent market risks, they increase the demand for one of these assets and thereby increase the returns on the asset. The most notable result in the out-of-sample predictability is the predictability of the returns on value-weighted portfolio by gold. The empirical results show that the restricted model fails to encompass the unrestricted model. Therefore, the unrestricted model is significant in improving out-of-sample predictability of the portfolio returns using gold. From the empirical analyses, we can conclude that in-sample predictability cannot guarantee out-of-sample predictability and vice versa. This may shed light on the disparate results between in-sample and out-of-sample predictability in a large body of previous literature.

Analysis of the Impact of US, China, and Korea Macroeconomic Variables on KOSPI and VKOSPI (미국·중국·한국 거시경제변수가 한국 주식수익률 및 변동성 지수 변화율에 미치는 영향 분석)

  • Jung-Hoon Moon;Gyu-Sik Han
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.209-223
    • /
    • 2024
  • Purpose - This article analyzes the impact of macroeconomic variables of the United States, China, and Korea on KOSPI and VKOSPI, in that United States and China have a great influence on Korea, having an export-driven economy. Design/methodology/approach - The influence of US, China, and Korea interest rates, industrial production index, consumer price index, US employment index, Chinese real estate index, and Korea's foreign exchange reserves on KOSPI and VKOSPI is analyzed on monthly basis from Jan 2012 to Aug 2023, using multifactor model. Findings - The KOSPI showed a positive relationship with the U.S. industrial production index and Korea's foreign exchange reserves, and a negative relationship with the U.S. employment index and Chinese real estate index. The VKOSPI showed a positive relationship with the Chinese consumer price index, and a negative relationship with the U.S. interest rates, and Korean foreign exchange reserves. Next, dividing the analysis into two periods with the Covid crisis and the analysis by country, the impact of US macroeconomic variables on KOSPI was greater than Chinese ones and the impact of Chinese macroeconomic variables on VKOSPI was greater than US ones. The result of the forward predictive failure test confirmed that it was appropriate to divide the period into two periods with economic event, the Covid Crisis. After the Covid crisis, the impact of macroeconomic variables on KOSPI and VKOSPI increased. This reflects the financial market co-movements due to governments' policy coordination and central bank liquidity supply to overcome the crisis in the pandemic situation. Research implications or Originality - This study is meaningful in that it analyzed the effects of macroeconomic variables on KOSPI and VKOSPI simultaneously. In addition, the leverage effect can also be confirmed through the relationship between macroeconomic variables and KOSPI and VKOSPI. This article examined the fundamental changes in the Korean and global financial markets following the shock of Corona by applying this research model before and after Covid crisis.

Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms (변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측)

  • Sanghyun Bae;Byounggu Choi
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.

A Study on Forecasting Model of the Apartment Price Behavior in Seoul (서울시 아파트 가격 행태 예측 모델에 관한 연구)

  • Kwon, Hee-Chul;Yoo, Jung-Sang
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.175-182
    • /
    • 2013
  • In this paper, the simulation model of house price is presented on the basis of pricing mechanism between the demand and the supply of apartments in seoul. The algorithm of house price simulation model for calculating the rate of price over time includes feedback control theory. The feedback control theory consists of stock variable, flow variable, auxiliary variable and constant variable. We suggest that the future price of apartment is simulated using mutual interaction variables which are demand, supply, price and parameters among them. In this paper we considers three items which include the behavior of apartment price index, the size of demand and supply, and the forecasting of the apartment price in the future economic scenarios. The proposed price simulation model could be used in public needs for developing a house price regulation policy using financial and non-financial aids. And the quantitative simulation model is to be applied in practice with more specific real data and Powersim Software modeling tool.