• Title/Summary/Keyword: Price forecasting

Search Result 299, Processing Time 0.048 seconds

Optimization of Integrated District Heating System (IDHS) Based on the Forecasting Model for System Marginal Prices (SMP) (계통한계가격 예측모델에 근거한 통합 지역난방 시스템의 최적화)

  • Lee, Ki-Jun;Kim, Lae-Hyun;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2012
  • In this paper we performed evaluation of the economics of a district heating system (DHS) consisting of energy suppliers and consumers, heat generation and storage facilities and power transmission lines in the capital region, as well as identification of optimal operating conditions. The optimization problem is formulated as a mixed integer linear programming (MILP) problem where the objective is to minimize the overall operating cost of DHS while satisfying heat demand during 1 week and operating limits on DHS facilities. This paper also propose a new forecasting model of the system marginal price (SMP) using past data on power supply and demand as well as past cost data. In the optimization, both the forecasted SMP and actual SMP are used and the results are analyzed. The salient feature of the proposed approach is that it exhibits excellent predicting performance to give improved energy efficiency in the integrated DHS.

Autoencoder factor augmented heterogeneous autoregressive model (오토인코더를 이용한 요인 강화 HAR 모형)

  • Park, Minsu;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Realized volatility is well known to have long memory, strong association with other global financial markets and interdependences among macroeconomic indices such as exchange rate, oil price and interest rates. This paper proposes autoencoder factor-augmented heterogeneous autoregressive (AE-FAHAR) model for realized volatility forecasting. AE-FAHAR incorporates long memory using HAR structure, and exogenous variables into few factors summarized by autoencoder. Autoencoder requires intensive calculation due to its nonlinear structure, however, it is more suitable to summarize complex, possibly nonstationary high-dimensional time series. Our AE-FAHAR model is shown to have smaller out-of-sample forecasting error in empirical analysis. We also discuss pre-training, ensemble in autoencoder to reduce computational cost and estimation errors.

Predicting Economic Activity via the Yield Spread: Literature Survey and Empirical Evidence in Korea (이자율 스프레드의 경기 예측력: 문헌 서베이 및 한국의 사례 분석)

  • Yun, Jaeho
    • Economic Analysis
    • /
    • v.26 no.3
    • /
    • pp.1-47
    • /
    • 2020
  • This paper surveys research since the 1990s on the ability of the yield spread and its components (i.e., expectation spread and term premium components) for future economic activity, and also conducts an empirical analysis of their forecasting ability using the yield data of Korean government bonds. This paper's survey, particularly for the US, shows that the yield spread has significant predictive power for some macroeconomic variables, but since the mid-1980s, its predictive power seems to have declined, possibly due to stronger inflation targeting. Next, this paper's empirical analysis using Korean data indicates that the yield spread, and the term premium component in particular, has significant predictive power for industrial production (IP) growth, consumer price index growth, and the IP gap. An out-of-sample analysis shows that the prediction equations are unstable over time, and that in predicting IP growth, the yield spread decomposition makes a significant contribution to the prediction of IP growth.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

Stock prediction using combination of BERT sentiment Analysis and Macro economy index

  • Jang, Euna;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.47-56
    • /
    • 2020
  • The stock index is used not only as an economic indicator for a country, but also as an indicator for investment judgment, which is why research into predicting the stock index is ongoing. The task of predicting the stock price index involves technical, basic, and psychological factors, and it is also necessary to consider complex factors for prediction accuracy. Therefore, it is necessary to study the model for predicting the stock price index by selecting and reflecting technical and auxiliary factors that affect the fluctuation of the stock price according to the stock price. Most of the existing studies related to this are forecasting studies that use news information or macroeconomic indicators that create market fluctuations, or reflect only a few combinations of indicators. In this paper, this we propose to present an effective combination of the news information sentiment analysis and various macroeconomic indicators in order to predict the US Dow Jones Index. After Crawling more than 93,000 business news from the New York Times for two years, the sentiment results analyzed using the latest natural language processing techniques BERT and NLTK, along with five macroeconomic indicators, gold prices, oil prices, and five foreign exchange rates affecting the US economy Combination was applied to the prediction algorithm LSTM, which is known to be the most suitable for combining numeric and text information. As a result of experimenting with various combinations, the combination of DJI, NLTK, BERT, OIL, GOLD, and EURUSD in the DJI index prediction yielded the smallest MSE value.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Disaggregate Demand Forecasting and Estimation of the Optimal Price for UTIS Service (무선교통정보수집제공시스템(UTIS) 서비스의 이용 수요 예측 및 이용료 적정 수준 산정에 관한 연구)

  • Jang, Seok-Yong;Jung, Hun-Young;Ko, Sang-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.101-115
    • /
    • 2008
  • This study reports UTIS(Urban Traffic Information System), which has been generalized in developed countries through brisk research and development and is being promoted for introduction by National Police Agency and Road Traffic Authority to reduce the astronomical amount of social expenses including traffic congestion expenses. Also this study investigates the proper charges for using by the preestimate of demand and contentment according to methods of payment after the service is introduced. The results of this study are as follows. First, demand forecast model is constructed by Binary Logit Model. Second, forecast models of using aspects of UTIS service according to methods of payment are established by Ordered Probit Model. Third, the proper charges for using of UTIS service according to methods of payment are presented to the supplier in the aspects of users. For this, preferences by using aspects and methods of payment are captured. And unit elasticity of coefficient of utilization is understood through responsiveness analysis according to methods of payment.

A Comparative Study between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles (SNS와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구)

  • Kim, Dongyoung;Park, Jeawon;Choi, Jaehyun
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.221-233
    • /
    • 2014
  • Because people's interest of the stock market has been increased with the development of economy, a lot of studies have been going to predict fluctuation of stock prices. Latterly many studies have been made using scientific and technological method among the various forecasting method, and also data using for study are becoming diverse. So, in this paper we propose stock prices prediction models using sentiment analysis and machine learning based on news articles and SNS data to improve the accuracy of prediction of stock prices. Stock prices prediction models that we propose are generated through the four-step process that contain data collection, sentiment dictionary construction, sentiment analysis, and machine learning. The data have been collected to target newspapers related to economy in the case of news article and to target twitter in the case of SNS data. Sentiment dictionary was built using news articles among the collected data, and we utilize it to process sentiment analysis. In machine learning phase, we generate prediction models using various techniques of classification and the data that was made through sentiment analysis. After generating prediction models, we conducted 10-fold cross-validation to measure the performance of they. The experimental result showed that accuracy is over 80% in a number of ways and F1 score is closer to 0.8. The result can be seen as significantly enhanced result compared with conventional researches utilizing opinion mining or data mining techniques.

An Estimation on the Market Size of Aqua-cultured Flatfish in Korea (양식 넙치 중장기 시장 규모 추정)

  • Kim, Bae-Sung;Kim, Chung-Hyeon;Cho, Jae-Hwan;Lee, Nam-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7781-7787
    • /
    • 2015
  • The purpose of This paper is to address the development on supply-demand outlook model of aqua-cultured korean Flatfish and introduces a projection of supply-demand and market prices during 2015-2017 using developed model. The supply-demand outlook model is composed as a partial equilibrium model of Korean Flat fish. Each equation in the model is estimated by the econometric techniques. A reviews of the demand-outlook model stability is also carried out by the references based on RMSPE. MAPE, and Theil's inequality coefficients. According to the reference of RMSPE, the error rates of the forecasting values of the aqua culture area, culturing quantity, production quantity, market price show less than 4%, The production quantity and farm price are predicted respectively to be 42,561MT and 10,191KW per kg in 2017.

Characteristic Analysis of Kospi Index Using Deep Learning (심층학습을 이용한 한국종합주가지수의 특성분석)

  • Snag-Il Han
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.51-58
    • /
    • 2024
  • This paper examines the differences between the Korean and American stock markets using the Kospi and S&P 500 indices and discusses policy implications through them. To this end, in addition to the existing time series analysis method, a deep learning method was used to compare markets, and the comparison was made in terms of stock price forecasting ability and data generation ability. In monthly data, the difference between time series was not large, and in daily data, the difference in terms of stability was weak, and there was no significant difference in predictive power or simulation data generation. As shown in the results of this study, if there is not much difference in market price movement patterns between Korea and the United States, tax benefits for long-term stocks investment will be effective against the side effects of short selling.