Kim, Gie-Tae;Lee, Gyeong-Bae;Choi, In-Seok;Kim, Jong-Gyeum
Proceedings of the KIEE Conference
/
2011.07a
/
pp.656-657
/
2011
산업사회의 급속한 발전과 생활수준 향상에 따라 전력수요 및 공급전망에 대한 인식이 점차 강조되고 있다. 에너지자원이 부족한 우리나라는 전체 에너지의 약 97%를 수입에 의존하고 있으므로 전력공급의 정확한 수요예측을 통해서 안정적, 경제적으로 전력을 공급해야 한다. 2001년 전력산업구조개편에 따라 전력시장은 발전부문만 시장에 참여하여 경쟁하는 발전경쟁체제로 발전사업자의 입찰량과 전력거래소의 전력수요 예측 결과를 이용하여 시간대별 전력시장가격을 결정하는 가격결정발전 계획을 수립하고 있다. 본 논문에서는 청정 녹색에너지로 피크시간대에 발전하여 주파수 조절을 담당함으로써 전력계통에 크게 기여하고 있는 수력 발전기의 최적 입찰 전략 및 수력발전 사업계획에 활용할 수 있는 전력거래가격 전망 전략을 제시하여 수력발전사업자의 수익 증대와 전력시장 가격 안정화에 기여하고자 한다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.457-460
/
2000
주가를 예측하는 것은 이미 오래 전부터 여러 가지 방법으로 시도되어 왔었다. 기업의 본질가치를 보는 기본적 분석부터 과거의 자료를 가지고 미래를 예측하는 기술적 분석까지 많은 연구가 있었으나 실제로 모든 예측이 그렇듯이 많이 적중을 했다는 것을 일부의 정형화된 분석방법을 제외하고는 찾지 못하였다. 그럼에도 불구하고 이번 연구에서는 기술적 분석에서 많은 요인들 중에서 기존에 많이 연구해 보지 못한 시계열적인 인자를 가지고 단기간의 주가를 예측하고자 한다. 주식이 상한가에 도달하였을 경우 그 상한가격의 잔량과 그 주식의 일일거래량을 비교하여 그 서로 두 관계가 다음날 주가에 어느 정도의 영향을 미치는지 회귀분석을 통하여 상관성을 분석하고 통계적 자료를 토대로 단기간의 주가를 상한 잔량 대비 일일거래량에 비추어 의사결정 지표를 제시하려고 한다. 적절한 예측결과가 나오게 되면 주식에 대해 매수를 희망하는 사람 뿐 아니라 주식을 보유하고 있는 사람에게 어느 정도 정보효과가 미치게 될 것이라 기대한다.
An overview on applications of wavelet transform in power systems presented in this paper. Wavelet transform is capable of making trade-offs between time and frequency resolutions, which is a property that makes it appropriate for the analysis of non stationary signal. In recent years, wavelet transform is widely accepted as a technology offering an alternative way due to its flexibility in representation of non-stationary signal even in power systems. This paper presents various applications of wavelet transform in power systems. Wavelet transform has been used by the authors in the field of power system protection for the classification of transient signals, and forecasting of short term loads and system marginal price and so on. Various research works carried out by many researchers in power systems are summarized.
Proceedings of the Korea Society for Simulation Conference
/
2001.10a
/
pp.313-317
/
2001
The approach to predict time series without neglecting the fluctuation in a short period is tried by using a digital FIR filter and a neural network. The differential waveform of the Nikkei average closing price is filtered by the FIR band-pass filter of 101 length. It is filtered into the five frequency bands of 0-1Hz, 1-2Hz, 2-3Hz, 3-4Hz and 4-5Hz by setting the sampling frequency 10Hz. The each filtered waveform is learned and forecasted by the neural network. The neural network of the back propagation method is adopted in the learning the waveform. By inputting the data of 20 days in the past, the prediction of 10 days ahead is carried out. After learning the time series of each frequency band by the neural network, the predicted data far each frequency band are obtained. The predicted waveforms of each frequency band are synthesized to obtain a final forecast. The waveform can be forecasted well as a whole.
As the construction of renewable energy generators is on the rise and gets bigger in size, researchers pay more and more attention to the impact of such facilities on the power market as well as on the stability of power grid system. In Korea, while studies on the latter, including calculating the marginal capacity of renewable energy generators, is being made, those on the former has not yet been performed. As such, this paper analyses the impact of a big renewable energy generators on the price and transaction cost of domestic power market and proposes ideas to minimize such influence by applying the technology of forecasting renewable energy.
Vendor-managed inventory(VMI) is a supply chain strategy to improve the inventory turnover and customer service in supply chain management. Unfortunately, many VMI programs fail because they simply transfer the transactional aspects of placing replenishment orders from customer to vendor. In fact, such VMI programs often degrade supply chain performance because vendors lack capability to plan the VMI operations effectively in an integrated way under the dynamic, complex, and stochastic VMI supply chain environment. This paper presents a decision support system, termed DSSV, for VMI in the retail supply chain. DSSV supports the market forecasting, vendor's production planning, retailer's inventory replenishment planning, vehicle routing, determination of the system operating parameter values, retailer's purchase price decision, and what-if analysis. The potential benefits of DSSV include the provision of guidance, solution, and simulation environment for enterprises to reduce risks for their VMI supply chain operations.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.3
no.1
/
pp.7-12
/
2003
In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.
International journal of advanced smart convergence
/
v.5
no.4
/
pp.32-39
/
2016
Machine learning is a field of artificial intelligence (AI), and a technology that collects, forecasts, and analyzes securities data is developed upon machine learning. The difference between using machine learning and not using machine learning is that machine learning-seems similar to big data-studies and collects data by itself which big data cannot do. Machine learning can be utilized, for example, to recognize a certain pattern of an object and find a criminal or a vehicle used in a crime. To achieve similar intelligent tasks, data must be more effectively collected than before. In this paper, we propose a method of effectively collecting data.
Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.329-337
/
2003
Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.
Proceedings of the Korean Information Science Society Conference
/
2006.10a
/
pp.500-504
/
2006
본 논문에서 기술하는 연구는 한국종합주가지수(KOSPI)의 장기적 변동 경향에 대한 확률적 예측 시스템을 제안한다. 제안된 방법론은 이미 단백질 상호작용 예측 시스템과 스트레스 확률 예측 시스템 등에 적용되어 유효성이 입증된 방법으로, 이미 알려진 데이터를 바탕으로 다양한 요인들의 가능한 모든 조합에 대한 경우의 수를 고려한 학습 결과에 기반하여 새로이 주어진 대상의 요인들을 분석해서 학습시 사용된 특정 군(class)에 속할지의 여부를 확률적으로 나타내준다. 이 방법론을 구현하기 위해 실제 과거 주가지수 데이터를 수집하여 CI(Combination Interrelation)행렬을 구현하였으며, 현재 진행중인 검증작업에 대해서도 기술하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.