• 제목/요약/키워드: Price forecasting

검색결과 299건 처리시간 0.048초

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

새로운 전력 부하모형 (New Electricity Load Model)

  • 김주락;최준영;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.289-291
    • /
    • 2000
  • In a competitive electricity power market, the price of electricity changes instantly, that of conventional market is predetermined and hardly changes. In such a new environment, customers' behaviors change instantly according to the changing electricity prices. If we develop a electricity load model that well describes the behavior of electricity consumers, we can utilize that model in forecasting the amount of future load, solving the load flow problem and finding the weak point of the system. In this paper new electricity model that considers the price of electricity and power factor of the load is presented. While conventional load model, which is demand function of electricity, uses the price of real and reactive power as the independent variable of the demand function. this new load model uses price of real power and penalty factor according to the power factor for the calculation of amount of electricity demand.

  • PDF

Structural effects on stock price forecasting

  • Kim, Steven H.;Kang, Dae-Suk
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.207-210
    • /
    • 1996
  • Learning methodologies such as neural networks or genetic algorithms usually require long training times. Case based reasoning, however, attains peak performance swiftly and is often appropriate for learning even with small data sets. Previous work has shown that an extended case reasoning methodology can yield superior performance in the task of predicting financial data series. This paper examines the impact of reasoning procedures on stock price prediction. The following characteristics are evaluated: size of input vector, multiplicity of neighboring states, and a scaling factor for growth. The concepts are illustrated in the context of predicting the price of an individual price.

  • PDF

포트폴리오 최적화와 주가예측을 이용한 투자 모형 (Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement)

  • 박강희;신현정
    • 대한산업공학회지
    • /
    • 제39권6호
    • /
    • pp.535-545
    • /
    • 2013
  • The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.

국내 아날로그와 디지털 이동전화 서비스 가입자 수 예측을 위한 선택 관점의 대체 확산 모형 (A Choice-Based Substitutive Diffusion Model for Forecasting Analog and Digital Mobile Telecommunication Service Subscribers in Korea)

  • 전덕빈;박윤서;김선경;박명환;박영선
    • 경영과학
    • /
    • 제19권2호
    • /
    • pp.125-137
    • /
    • 2002
  • The telecommunications market is expanding rapidly and becoming more substitutive. In this environment, demand forecasting is very difficult, yet important for both practitioners and researchers. in this paper, we adopt the modeling approach proposed dy Jun and Park [6]. The basic premise is that demand patterns result from choice behavior, where customers choose a product to maximize their utility. We apply a choice-based substitutive diffusion model to the Korean mobile telecommunication service market where digital service has completely replaced analog service. In comparison with Bass-type multigeneration models. our model provides superior fitting and forecasting performance. The choice-based model is useful in that it enables the description of such complicated environments and provides the flexibility to include marketing mix variables such as price and advertising in the regression analysis.

기상관측자료를 이용한 제주도 풍력단지의 풍력발전량 예측에 관한 연구 (A Study on Estimation of Wind Power Generation using Weather Data in Jeju Island)

  • 류구현;김기수;김재철;송경빈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2349-2353
    • /
    • 2009
  • Due to high oil price and global warming of the earth, investments for renewable energy have been increased a lot continuously. Specially, wind power has been received a great attention in the world. In order to construct a new wind farm, forecasting of wind power generation is essential for a feasibility test. This paper investigates wind velocity measurement data of Gosan weather station which located in Hankyung of Jeju island. This paper presents results of estimation of wind power generation using digital weather forecast provided from Korea meteorological administration, and the accuracy of the wind power forecasting by comparison between forecasted data and actual wind power data.

스마트 농업을 위한 생산량 예측 방법 (Yield Forecasting Method for Smart Farming)

  • 이준구;문애경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.619-622
    • /
    • 2015
  • 최근 심각한 기후변화로 인하여 농산물 생산성 및 농산물 가격의 변동성이 커지고 있으며, 이러한 문제를 해결하기 위하여 농산물의 생산량을 예측하는 방법이 연구되고 있다. 본 논문에서는 선형 방정식을 이용하여 생산 단수, 생산 면적, 기후 요소를 예측하였으며, 기후 요소의 가중치 합을 이용하여 보정된 생산 단수와 생산 면적을 곱하여 생산량을 계산하였다. 실험에서 예측한 생산량은 실제 생산량과 비교하여 약 90% 이상의 예측율을 보였다.

  • PDF

지능형 통합 생산 물류 시스템의 동기화된 시스템 설계 (A Synchronous System Design of an Intelligent-Integrated Production & Logistics Systems)

  • 배재호;왕지남
    • 산업공학
    • /
    • 제12권2호
    • /
    • pp.222-236
    • /
    • 1999
  • This paper presents a design and implementation of an intelligent-integrated production-logistics systems. The situation considered here is that there are multiple manufacturing plants and multiple distribution centers. Effective distribution resource and production planning are required to reduce inventory cost and to avoid inventory shortage. We propose an intelligent forecasting scheme of each distribution centers, adaptive inventory replenishment planning, distribution resource planning, and integrated production planning system. In forecasting a huge number of on-line model identification is performed using neural network approximation capability. An efficient adaptive replenishment planning and distribution resource planning are also presented in connection with forecasting scheme. An appropriate production is also requested based on production lead-time and the results of distribution planning. Experimental simulations are presented to verify the proposed approach using real data.

  • PDF

신제품 수요예측 방법론 연구 (A Study on the New Product Forecasting Methodology)

  • 임종인;오형식
    • 대한산업공학회지
    • /
    • 제18권2호
    • /
    • pp.51-63
    • /
    • 1992
  • It is commonly accepted that the demand forecasting data play a vital role in deciding strategic variables such as the optimal market entry time, the price structure and the production capacity etc. In case of the new product, however, it is hard to apply the well known regression-type methodologies. In this study, we survey the characteristics of various types of new product demand forecasting(NPDF) methodologies which are useful in case the historical data are not available. Further, we explore the possibility of incorporating the NPDF methodologies and develope the unified infra-structure of the NPDF methodologies. Finally we propose an integrated prototype of the NPDF model.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.