• Title/Summary/Keyword: Preventive Replacement

Search Result 115, Processing Time 0.028 seconds

The Two-State Dynamic Equipment Replacement Model (2상태 동적 설비교체 모형)

  • Jang Hyun-Ki;Kim Chang-Eun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.115-123
    • /
    • 2004
  • Replacement problems can be classed as either deterministic of stochastic. Deterministic problems are those in which the timing and the outcome of the replacement action are assumed to be known with certainty. Before proceeding with development of replacement models it is important to note that preventive replacement actions, that is, ones taken before equipment reaches a failed state, require two necessary conditions: (1) The total cost of the replacement must be greater after failure than before. (2) The failure rate of the equipment must be increasing. Equipment is subject to failure. On failure, one of two possible actions can be taken : repair or complete replacement of the failed equipment. In this paper, we proposed optimal overhaul, repair, replacement maintenance model with two-state.

  • PDF

Maintenance Policy Based on Cost and Downtime Following the Expiration of Combination Warranty (혼합보증이 종료된 이후의 비용과 비가동시간에 근거한 보전정책)

  • Jung, Ki-Mun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.909-923
    • /
    • 2008
  • This paper considers the replacement model and the preventive maintenance model following the expiration of combination warranty for a repairable system. If the system fails after the combination warranty is expired, then it is minimally repaired at each failure. The criterion used to determine the optimal replacement policy and the optimal preventive maintenance policy is the overall value function based on the expected cost rate per unit time and the expected downtime per unit time. The numerical examples are presented for illustrative purpose when the failure time follows a Weibull distribution.

On the New Age Replacement Policy (새로운 연령교체 방식의 개발)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.280-286
    • /
    • 2016
  • Purpose: Recently, Jiang defines the tradeoff B life to minimize a sum of life lost by preventive maintenance (PM) and corrective maintenance (CM) contribution parts and sets up an optimal replacement age of age replacement policy as this tradeoff life. In this paper, Jiang's model only considering the known lifetime distribution is extended by assigning different weights to two parts of PM and CM in order to reflect the practical maintenance situations in application. Methods: The new age replacement model is formulated and the meaning of a weight factor is expressed with the implied cost of failure under asymptotic expected cost model and also discussed with one-cycle expected cost criterion. Results: The proposed model is applied to Weibull and lognormal lifetime distributions and optimum PM replacement ages are derived with corresponding implied cost of failure. Conclusion: The new age replacement policy to escape the estimation of cost of failure in classical asymptotic expected cost criterion based on the renewal process is provided.

Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions

  • Tian, Hao;Li, Fangyuan
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.499-521
    • /
    • 2016
  • In this paper, a probabilistic- and finite element-based approach to evaluate and predict the lifetime performance of reinforced concrete (RC) bridges undergoing various maintenance actions is proposed with the time-variant system reliability being utilized as a performance indicator. Depending on their structural state during the degradation process, the classical maintenance actions for RC bridges are firstly categorized into four types: Preventive type I, Preventive type II, Strengthening and Replacement. Preventive type I is used to delay the onset of steel corrosion, Preventive type II can suppress the corrosion process of reinforcing steel, Strengthening is the application of various maintenance materials to improve the structural performance and Replacement is performed to restore the individual components or overall structure to their original conditions. The quantitative influence of these maintenance types on structural performance is investigated and the respective analysis modules are written and inputted into the computer program. Accordingly, the time-variant system reliability can be calculated by the use of Monte Carlo simulations and the updated the program. Finally, an existing RC continuous bridge located in Shanghai, China, is used as an illustrative example and the lifetime structural performance with and without each of the maintenance types are discussed. It is felt that the proposed approach can be applied to various RC bridges with different structural configurations, construction methods and environmental conditions.

Developing a Non-Periodic Preventive Maintenance Model Guaranteeing the Minimum Reliability (최소 신뢰도를 보장하는 비 주기적 예방보전 모형 개발)

  • Lee, Juhyun;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2018
  • Purpose: This paper proposes the non-periodic preventive maintenance policy based on the level of cumulative hazard intensity. We aim to construct a cost-effectiveness on the proposed model with relaxing the constraint on reliability. Methods: We use the level of cumulative hazard intensity as a condition variable, instead of reliability. Such a level of cumulative hazard intensity can derive the reliability which decreases as the frequency of preventive maintenance action increases. We also model the imperfect preventive maintenance action using the proportional age setback model. Conclusion: We provide a numerical example to illustrate the proposed model. We also analyze how the parameters of our model affect the optimal preventive maintenance policy. The results show that as long as high reliability is guaranteed, the inefficient preventive maintenance action is performed reducing the system operation time. Moreover, the optimal value of the proposed model is sensitive to changes in preventive maintenance cost and replacement cost.

Periodic Preventive Maintenance Policies when Minimal Repair Costs Vary at Failures

  • Joon Keun Yum;Gi Mun Jung;Dong Ho Park
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.86-95
    • /
    • 1997
  • This paper considers a repairable system, which is maintained preventively at periodic times and is minimally repaired at each failure. Most preventive maintenance policies for such repairable systems assume that the cost of minimal repair is constant regardless of its age at failure. However, it is more practical to consider the situations where the cost of minimal repair is dependent not only on its age at failue, but also on the number of preventive maintenance carried out prior to its failure. We consider the preventive maintenance carried out prior to its failure. We consider the preventive maintenance policy with age-dependent minimal repair cost. The optimal policies which minimize the expected cost rate over an infinite time span are discussed. We obtain the optimal period and number of preventive maintenance prior to replacement of the system.

  • PDF

A Production and Preventive Maintenance Policy with Two Types of Failures (두 가지 고장형태를 고려한 생산 및 예방보전 정책)

  • 김호균;조형수
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.53-65
    • /
    • 2002
  • This paper studies an economic manufacturing quantity (EMQ) model with two types of failures and planned preventive maintenance of the production facility. One is a type I (major) failure which should be corrected by a failure maintenance and the other is a type H (minor) failure which can be minimally repaired without interrupting the production run. The objective is to determine the lot size and preventive replacement policy minimizing the long-run expected cost per unit time. We consider a control policy with a constant production lot size and preventive maintenance after completing n production runs. It is assumed that both preventive and failure maintenance times are random and the demand arriving during a stock-out period is lost. An expression for the expected cost per unit time is obtained in the general case. A special case is discussed and numerical results are provided.

An Optimum Maintenance Policy : A bayesian approach to periodic incomplete preventive maintenance with minimal repair at failure

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.193-196
    • /
    • 1997
  • In this paper we consider a Bayesian theoretic approach to periodic incomplete preventive maintenance with minimal repair at failure. We assume that the system failure rate is increasing as the frequency of PM increases and that the system is replaced at the K-th PM under this maintenance strategy. The optimal policies which minimize the expected cost rates are discussed. We seek the optimal periodic PM interval x and replacement time K under a Weibull failure intensity. Assuming suitable prior distribution for the Weibull parameters, we derive the posterior distribution incorporating failure data and obtain the updated optimal replacement strategies.

  • PDF

Optimal Preventive Replacement under Periodic Inspections for an Item in Preparedness (정기검사하에서 준비태세의 부품에 대한 최적예방교환)

  • Kong, Myung-Bock;Won, Young-Cheol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.651-662
    • /
    • 1996
  • This paper concerns with preventive replacement under periodic inspections for an item (system) which is in a state of preparedness. The item is subject to wear. The item fails randomly but the failure rate depends on the accumulated wear. The item is preventively replaced if it survives a certain wear limit at periodic inspections. The foiled item is, however, replaced at periodic inspections. Given the costs for replacements and inspections, and the penalty cost of the time elapsed between failure und its detection, the optimal wear limit according to the long-run expected cost per unit time criterion is derived. It has been proved that the optimal wear limit is unique if an item has increasing weer-dependent failure rate. A numerical example for a stationary gamma wear process with Weibull distributed failure is given to show its applicability.

  • PDF

Maintenance Model for Multi-Component System Considering Failure Types (고장형태(故障形態)를 고려한 다부품장비(多部品裝備)의 보전모형(保全模型))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.33-42
    • /
    • 1990
  • This paper proposes the maintenance model of multi-component system when the failure characteristics and types of components are considered. In this model, it is assumed that a system is composed of a critical component, a major component and a minor component. Also, failure types is classified into major failure and minor failure. If major failure occurs to critical component before system age replacement time, the system is renewed. If major failure does not occur until its age replacement time, preventive maintenance is performed at age replacement time T. Minimal repairs are carried out after each minor failure. Major component is minimal-repaired if any failure is discovered during operation. Minor component should be replaced as soon as any failure is found. This paper determines the optimal replacement time of the system which minimizes total maintenance cost. Numerical example illustrates these results.

  • PDF