• Title/Summary/Keyword: Prevention and mitigation

Search Result 290, Processing Time 0.019 seconds

A Study on Rockfall and Landslide Prevention Countermeasure in Kangwon Provincial (강원지방 낙석 및 산사태 방지 대책을 위한 연구)

  • Kim, Sik-Young;Lee, Seung-Ho;Hwang, Young-Cheol;Lee, Jong-In
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.259-262
    • /
    • 2007
  • In our country it develop damage reduction and prediction technology for prevention the danger of the rockfall and landslide which is repeated yearly. And it constructs integrated and efficient the misfortune management system it will be able to manage. So we will accomplish aims that is the rockfall and landslide damage occurrence reduction.

  • PDF

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities

  • Hai Van Dang;Sungwon Shin;Eunju Lee;Hyoungsu Park;Jun-Nyeong Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.364-379
    • /
    • 2022
  • Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.

A study on the Information Management System for the Disaster Prevention (재난방재 통보관리 시스템에 관한 연구)

  • Jang, Mi-Ho;Hong, Gyu-Gab;Jung, Ho-Young;Cho, Won-Cheol;Lee, Tae-Shik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.492-496
    • /
    • 2007
  • This paper focused on "the information management for the disaster prevention", which is based on If, which copes with partial or whole national disaster effectively and which helps to reduce the damage by natural or artificial disasters promptly.

  • PDF

Importance of VTS for prevention of ship collision and smooth marine traffic (해상충돌방지 및 원활한 교통흐름을 위한 VTS관제의 중요성)

  • Kim, Won-Uk;Park, Yeong-Su;Kim, Jong-Seong
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.51-57
    • /
    • 2007
  • 근래에 해상물동량의 증가로 선박에 의한 해상운송이 늘어나면서 우리나라 연안뿐만 아니라 전 세계 해상의 교통흐름을 복잡하게 만들었다. 특히, 주요 항만 인접해안, 협수로 및 주요 통항로는 더욱 복잡한 교통흐름을 보여주고 있다. 이에 어느때 보다 선박에 의한 해양사고 발생 가능성이 높아졌다. 이 연구에서는 해양사고가 생길 가능성이 가장 높은 해역에서의 원활한 교통흐름과 안전운항을 위해 우리나라 뿐만 아니라 전 세계적으로 설치 운용중인 VTS 시스템에 대해 고찰 하였다.

  • PDF

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.

Flexural behavior of precast concrete wall - steel shoe composite assemblies with dry connection

  • Wu, Xiangguo;Xia, Xinlei;Kang, Thomas H.K.;Han, Jingcheng;Kim, Chang-Soo
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.545-555
    • /
    • 2018
  • This study aimed to investigate the flexural behavior of precast concrete (PC) wall - steel shoe composite assemblies with various dry connection details at mid-span. Flexural tests were performed for five scenarios. Test parameters included the width of test specimens, arrangement of steel shoe connectors, and use of structural adhesive or waterproof tape at the mid-span joint. The test results showed that the PC wall - steel shoe composite assemblies joined at mid-span showed flexural damage patterns combined with rotational deformation, and the structural performance was satisfactory regardless of the arrangement of steel shoe connectors. Considering the two deformation components (flexural deformation by bending and rotational deformation due to joint opening), a theoretical model was proposed to analyze flexural strength and joint opening, and the simple model gave good predictions with acceptable accuracy.

Robust market-based control method for nonlinear structure

  • Song, Jian-Zhu;Li, Hong-Nan;Li, Gang
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1253-1272
    • /
    • 2016
  • For a nonlinear control system, there are many uncertainties, such as the structural model, controlled parameters and external loads. Although the significant progress has been achieved on the robust control of nonlinear systems through some researches on this issue, there are still some limitations, for instance, the complicated solving process, weak conservatism of system, involuted structures and high order of controllers. In this study, the computational structural mechanics and optimal control theory are adopted to address above problems. The induced norm is the eigenvalue problem in structural mechanics, i.e., the elastic stable Euler critical force or eigenfrequency of structural system. The segment mixed energy is introduced with a precise integration and an extended Wittrick-Williams (W-W) induced norm calculation method. This is then incorporated in the market-based control (MBC) theory and combined with the force analogy method (FAM) to solve the MBC robust strategy (R-MBC) of nonlinear systems. Finally, a single-degree-of-freedom (SDOF) system and a 9-stories steel frame structure are analyzed. The results are compared with those calculated by the $H{\infty}$-robust (R-$H{\infty}$) algorithm, and show the induced norm leads to the infinite control output as soon as it reaches the critical value. The R-MBC strategy has a better control effect than the R-$H{\infty}$ algorithm and has the advantage of strong strain capacity and short online computation time. Thus, it can be applied to large complex structures.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

Effect of the limiting-device type on the dynamic responses of sliding isolation in a CRLSS

  • Cheng, Xuansheng;Jing, Wei;Li, Xinlei;Lu, Changde
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.133-144
    • /
    • 2018
  • To study the effectiveness of sliding isolation in a CRLSS (concrete rectangular liquid-storage structure) and develop a reasonable limiting-device method, dynamic responses of non-isolation, sliding isolation with spring limiting-devices and sliding isolation with steel bar limiting-devices are comparatively studied by shaking table test. The seismic response reduction advantage of sliding isolation for concrete liquid-storage structures is discussed, and the effect of the limiting-device type on system dynamic responses is analyzed. The results show that the dynamic responses of sliding isolation CRLSS with steel bar-limiting devices are significantly smaller than that of sliding isolation CRLSS with spring-limiting devices. The structure acceleration and liquid sloshing wave height are greatly influenced by spring-limiting devices. The acceleration of the structure in this case is close to or greater than that of a non-isolated structure. Liquid sloshing shows stronger nonlinear characteristics. On the other hand, sliding isolation with steel bar-limiting devices has a good control effect on the structural dynamic response and the liquid sloshing height simultaneously. Thus, a limiting device is an important factor affecting the seismic response reduction effect of sliding isolation. To take full advantage of sliding isolation in a concrete liquid-storage structure, a reasonable design of the limiting device is particularly important.