• 제목/요약/키워드: Pretensioner

검색결과 14건 처리시간 0.028초

탄성력 기반 안전벨트 프리텐셔너 설계 (Design of Seat Belt Pretensioner driven by Elastic Force)

  • 이용수;박세윤;이현은;김상현
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.545-550
    • /
    • 2023
  • 차량 충돌 시 벨트를 잡아당겨 탑승자의 상해 가능성을 최소화하기 위한 안전장치인 프리텐셔너는 화약 폭발 방식으로 구동되므로 화재나 파편이 튀는 2차 사고의 위험이 있으며 사고 발생 후 프리텐셔너 내부의 가스 발생기 뿐만 아니라 매니폴더를 포함한 연결 부품 모두를 교체해야 하는 단점이 있다. 따라서 본 논문에서는 안전하고 반영구적으로 사용이 가능한 탄성력 기반 프리텐셔너를 제안한다. 기존 프리텐셔너의 작동 원리를 열역학적/동역학적 관점으로 분석한 후 프리텐셔너 전개를 위해 필요한 가스 폭발에너지를 탄성에너지로 변환하였다. 또한 비감쇠 진동해석을 통해 프리텐셔너 작동시간을 확인하였으며 폭발 압력과 전개 시간 조건을 모두 만족하는 스프링 강성을 선정하였다. 스프링 부착 위치에 따른 차량 내부 설치 규격을 고려하여 코일 스프링 형상 및 고정부를 설계하였으며 제작을 통해 탄성력 기반 프리텐셔너의 성능 검증을 수행하였다.

내접 기어를 이용한 프리텐셔너의 구동 메커니즘 개발 (Development of Operating Mechanism of a Pretensioner using Internal Gear Pairs)

  • 정성필;박태원;김욱현;홍요선
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.89-94
    • /
    • 2010
  • The pretensioner is used to retract the belt webbing and tighten up any slack in the event of a crash. The retracting force of the pretensioner helps move the passenger into the optimum crash position in his or her seat. In this paper, the new concept of an operating mechanism of the pretensioning system is presented. The internal gear design program is developed using MATLAB. Two kinds of numerical analysis model are created. The first one, the rigid body dynamic model, is used to estimate the performance of several gear pairs. The initial performance of the new operating mechanism is analyzed and the best combination of the gear pairs is selected. The second one, the structural dynamic model, is used to calculate the deformation of the gear teeth. To decrease the deformation and interference of the teeth, the shape of the gear pairs is changed.

자동차용 프리텐셔너의 성능향상을 위한 실험적 연구 (Experimental Study to Improve the Performance of the Pretensioner for a Passenger Vehicle)

  • 정성필;박태원;송택림
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.1-6
    • /
    • 2010
  • This study presents the practical design modification to improve the retracting performance of the pyro-typed high power pretensioner. 3 components of the pretensioner are redesigned and the usefulness of the design modification is verified by the experiment. During the pretensioning process, the gas blast generated from the gunpowder is transferred to the rack-pinion gear through the manifold. The rack-pinion gear is connected with the spool where the webbing is rolled up. According to the rotation of the pinion, the spool is turned and the webbing is winded. To help the gas blast flow well, the shape of the inner cross section of the manifold is changed. The spur gear design program is developed and used to find the best combination of the rack-pinion gear pair to increase the power transmission efficiency. The pinion guide is installed on the spool to prevent the vibration of the pinion. As a result of the experiment, the amount of the web retraction length is increased when every single design modification is applied. Therefore, the retracting performance of the pretensioner is considered to be improved if the presented design modifications are applied.

차량용 탑승자 보호 기술 (Automotive Occupant Protection Technologies)

  • 이성수
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.223-226
    • /
    • 2018
  • 최근 차량 사고로부터 탑승자를 보호하기 위해서 다양한 안전 기술이 집중적으로 개발되고 있다. 본 논문에서는 잠김 방지 브레이크 시스템, 견인력 제어 시스템, 제동력 배분 시스템, 전자 주행 안정 장치, 자동 긴급 브레이크, 에어백, 좌석벨트 프리텐셔너, 능동형 헤드레스트 등 다양한 차량용 탑승자 보호 기술을 살펴보고, 각 기술의 동작원리 및 구현에 대해 설명한다.

안전벨트 충돌하중특성 최적화 (Optimization of Seat belt Load Limiter for Crashworthiness)

  • 서보필;최성철;김범중;한성준
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

안전띠 착용 유무에 근거한 두 단계의 충돌 가혹도 수준을 갖는 충돌 판별 알고리즘 (Crash Discrimination Algorithm with Two Crash Severity Levels Based on Seat-belt Status)

  • 박서욱;이재협
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.148-156
    • /
    • 2003
  • Many car manufacturers have frequently adopted an aggressive inflator and a lower threshold speed for airbag deployment in order to meet an injury requirement for unbolted occupant at high speed crash test. Consequently, today's occupant safety restraint system has a weakness due to an airbag induced injury at low speed crash event. This paper proposes a new crash algorithm to improve the weakness by suppressing airbag deployment at low speed crash event in case of belted condition. The proposed algorithm consists of two major blocks-crash severity algorithm and deployment logic block. The first block decides crash severity with two levels by means of velocity and crash energy calculation from acceleration signal. The second block implemented by simple AND/OR logic combines the crash severity level and seat belt status information to generate firing commands for airbag and belt pretensioner. Furthermore, it can be extended to adopt additional sensor information from passenger presence detection sensor and safing sensor. A simulation using real crash data for a 1,800cc passenger vehicle has been conducted to verify the performance of proposed algorithm.

INJURY PERFORMANCE EVALUATION OF THE CHILD RESTRAINT SYSTEMS

  • Shin, Y.J.;Kim, H.;Kim, S.B.;Kim, H.Y.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.185-191
    • /
    • 2007
  • The new FMVSS 208, 213, 225 regulations include automatic suppression of airbags to prevent low-risk airbag deployment and the use of child seats with a rigid-bar anchor system. The regulations mean that children must sit in the rear seat, but do not include other specific safety measures for their protection. In the rear, restraint equipment consists of three-point shoulder/lap belts for the outside seats and a static two-point lap belt in the middle, with no additional devices such as pretensioners or load limiters; this is far from optimal for children. This study investigated injury rates using a 3-year-old-child dummy. ECE R44 sled tests used a booster, a speed of 48 km/h, and a 26- to 32-g rectangular deceleration pulse. While seated on a booster, the dummies were restrained by an adult shoulder/lap three-point belt. HIC_15 msec, Chest G and Nij were somewhat lower with an emergency locking retractor (ELR)+pretensioner+load limiter than with only an ELR or with ELR+pretensioner. However, the current seat-belt system results in injury rates that exceed the limit for OOP performance under the new FMVSS 208 regulations.

에어백용 인플레이터를 이용한 미니 가스발생기 연소특성 실험연구 (An Experimental Study on Combustion Characteristics of Mini Gas Generator by using a Automotive Airbag Inflater)

  • 김종한;이상무;김방식
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.881-888
    • /
    • 2013
  • A basic study was performed to develop a mini gas generator by using a commercial automotive airbag inflater. The mini gas generator can be used for industrial and military application like a seat belt pretensioner. Some parameters were experimentally investigated to reduce the size of the inflater. Basic combustion tests were performed in the closed chamber and measured the pressure and the temperature behavior according to the design parameters. From the study, essential parameters were determined to design a mini gas generator.