• Title/Summary/Keyword: Prestressed Concrete Beam

Search Result 240, Processing Time 0.026 seconds

Cyclic performance of concrete beams reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Deng, Yu;Hu, Minghua;Tang, Dilian
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • This paper describes an experimental study of the cyclic performance of concrete beams reinforced with CFRP prestressed concrete prisms (PCP). The failure modes, hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation of concrete beams reinforced with CFRP prestressed concrete prisms were analyzed. The results show that The CFRP prestressed prisms reinforced concrete beams have good seismic performance. The level of effective prestress and cross section of CFRP prestressed prisms had a little influence on the bearing capacity, the ductility and energy dissipation capacity of CFRP prestressed prisms reinforced concrete beams.

Effects of cyclic loading on the long-term deflection of prestressed concrete beams

  • Zhang, Lihai;Mendis, Priyan;Hon, Wong Chon;Fragomeni, Sam;Lam, Nelson;Song, Yilun
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.739-754
    • /
    • 2013
  • Creep and shrinkage have pronounced effects on the long-term deflection of prestressed concrete members. Under repeated loading, the rate of creep in prestressed concrete members is often accelerated. In this paper, an iterative computational procedure based on the well known Model B3 for creep and shrinkage was developed to predict the time-dependent deflection of partially prestressed concrete members. The developed model was validated using the experimental observed deflection behavior of a simply supported partially prestressed concrete beam under repeated loading. The validated model was then employed to make predictions of the long-term deflection of the prestressed beams under a variety of conditions (e.g., water cement ratio, relatively humidity and time at drying). The simulation results demonstrate that ignoring creep and shrinkage could lead to significant underestimation of the long-term deflection of a prestressed concrete member. The model will prove useful in reducing the long-term deflection of the prestressed concrete members via the optimal selection of a concrete mix and prestressing forces.

Analysis of Prestressed Concrete Slab Bridge by the Beam Theory (보 이론에 의한 PSC 슬래브 교량의 해석)

  • Han, Bong-Koo;Kim, Duk-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • A prestressed concrete slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis.

Analysis and design for torsion in reinforced and prestressed concrete beams

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.575-590
    • /
    • 2001
  • This paper presents a simplified method for the design and analysis of non-prestressed, partially prestressed, and fully prestressed concrete beams subjected to pure torsion. The proposed model relates the torsional strength to the concrete compressive strength and to the amounts of transverse and longitudinal reinforcement. To check the adequacy of this simple method, the calculated strength and mode of failure are checked against the experimental results of 17 prestressed concrete 66 reinforced concrete beam tests available in the literature, and very good agreement is found. The simplicity of the method is illustrated by two examples, one for design and another for analysis.

Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams

  • Sung, Deokyong;Hong, Seongwon
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.671-683
    • /
    • 2022
  • To investigate and predict the long-term time-dependent behavior, such as creep, shrinkage, and relaxation of PS strands, and prestress loss in prestressed steel-concrete composite beams, named Precom, full-scale tests were conducted and the collected data were compared with those obtained from the two proposed analytical models. The combined effective modulus method (EMM)-empirical model proposed with a flowchart considered the creep effect to determine the prestress loss. Conversely, the age-adjusted effective modulus method (AEMM) with CEB-FIP equation was developed to account for the concrete aging. The results indicated that the AEMM with CEB-FIP model predicts the long-term behavior of Precom effectively.

Optimum Design of Prestressed Precast Gerber-U Beams (프리스트레스트 프리캐스트 게르버 U형보의 최적설계)

  • 김인규;박현석;이종민;조상규;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.173-178
    • /
    • 2001
  • The cost on transmission and election of precast concrete members largely depends on the weight of them. In this study, the weight of prestressed precast beam could be reduced by control the section and prestressing force to meet the required strength on the basis of the optimum process. The top and bottom concrete stress of the section considered is required to check according to each construction step for this process. The original rectangular beam weight could be reduced up to 50~39% due to the development of a U-beams from the optimum process.

  • PDF

Study on prestressed concrete beams and poles with cement replaced by steel dust

  • Sujitha Magdalene, P;Harishankar, S
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.391-405
    • /
    • 2017
  • Cement acts as the most important component of concrete as it binds and holds the concrete together. But it is one of the major $CO_2$ emitters all over the world, during manufacturing (900 kg of $CO_2$ per 1000 kg). Some of the modern construction methods aim at reducing the amount of usage of cement and came out with numerous solutions for replacement of the same. One such supplement in current trend is the Steel dust or the Electric Arc Furnace Dust (EAFD), which is a waste product from the electric arc furnace when the scrap metal is melted. When the concrete containing steel dust is exposed to atmosphere, the environmental oxygen and moisture play role to form rust and ultimately the member becomes harder. As Cement is the binder of conventional concrete, only certain percentage of the same could be replaced by the new material, steel dust. Tests were conducted for the 28 days cube strength of M45 grade (suitable for prestressing) concrete which has 0%, 10%, 20%, 30%, 40% and 50% steel dust instead cement. From the test, the optimum percentage replacement of steel dust was obtained, for which the beams and overhead poles were cast, prestressed and tested for the failure load and deflections. A conventional concrete beam and overhead pole were also cast, prestressed and tested to compare the results with those of the beam and pole that contained steel dust. The load vs. deflection plot and other results from the test is also discussed.

Nonlinear Flexural Modelling of Composite Prestressed Concrete Beams Reinforced with Advanced Composite Materials (복합 신소재 프리스트레이트 콘크리트보의 비선형 휨 모델링)

  • ;Naaman, Antoine
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.403-408
    • /
    • 1998
  • The analytical model is developed in order to predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beam which contains advanced composite materials. The block concept is used, which be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiple sliced blocks in a section. The model can successfully predict the flexural behavior of variously reinforced prestressed concrete beams.

  • PDF

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.