• Title/Summary/Keyword: Prestressed

Search Result 1,178, Processing Time 0.021 seconds

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.

Analysis and design for torsion in reinforced and prestressed concrete beams

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.575-590
    • /
    • 2001
  • This paper presents a simplified method for the design and analysis of non-prestressed, partially prestressed, and fully prestressed concrete beams subjected to pure torsion. The proposed model relates the torsional strength to the concrete compressive strength and to the amounts of transverse and longitudinal reinforcement. To check the adequacy of this simple method, the calculated strength and mode of failure are checked against the experimental results of 17 prestressed concrete 66 reinforced concrete beam tests available in the literature, and very good agreement is found. The simplicity of the method is illustrated by two examples, one for design and another for analysis.

Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis

  • Kim, T.H.;Cheon, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.63-79
    • /
    • 2012
  • The purpose of this study is to evaluate the behavior and strength of prestressed concrete deep beams using nonlinear analysis. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, the RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of prestressed concrete. The smeared crack approach was incorporated. A bonded or unbonded prestressing bar element is used based on the finite element method, which can represent the interaction between the prestressing bars and concrete of a prestressed concrete member. The proposed numerical method for the evaluation of behavior and strength of prestressed concrete deep beams is verified by comparing its results with reliable experimental results.

An Experimental Study for the Structural Behavior of the Precast Prestressed Concrete Columns (프리캐스트 콘크리트 교각의 구조거동에 관한 실험적 연구)

  • Choi, Seung-Won;Shin, Hyun-Mok;Lee, Jae-Hoon;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.146-149
    • /
    • 2006
  • In many previous studies, a prestressed concrete column has a larger flexural strength, shear strength and restoring force than a RC column. Recently, a precast prestressed concrete column is rising up a very rational column structure in that a economic aspect. In a precast prestressed concrete column, it makes in a factory. So, it needs a small construction site and acquires a higher durability than a cast in place concrete column. Seven precast concrete columns were tested under a constant axial load and a cyclically reversed horizontal load to investigate the performance. It is designed with a hollow section and consisted of 4 segments. The main variables of the test were a amount of prestressed, a type of joints and a boding type of strands. The test results show that the performance of a precast prestressed concrete column; failure mode, maximum load, energy dissipation and stiffness degradation.

  • PDF

A Study on the Static Behavior of Connection for the Steel-Concrete Hybrid Girder (강-콘크리트 혼합거더 접합부의 정적 거동에 관한 연구)

  • Kim, Moon-Kyum;Lho, Byeong-Cheol;Kim, Jeong-Hoon;Park, Hyun-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • This paper focuses on the static behavior of prestressed and non-prestressed connections for the steel-concrete hybrid girder. Based on the experimental study, it is found that the girder with non-prestressed connection failed by local concrete failure at the connection area, and the studs are taken out from the concrete. In case of the girder with prestressed joint, the failure of the girder is initiated by the crack at the varying section area. The test results show that the girder with prestressed connection has higher load carrying capacity compare to the girder with non-prestressed connection by 12%. Therefore, the application of prestressing at the concrete-steel connection recommended for the more secure connection.

  • PDF

Cyclic performance of concrete beams reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Deng, Yu;Hu, Minghua;Tang, Dilian
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • This paper describes an experimental study of the cyclic performance of concrete beams reinforced with CFRP prestressed concrete prisms (PCP). The failure modes, hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation of concrete beams reinforced with CFRP prestressed concrete prisms were analyzed. The results show that The CFRP prestressed prisms reinforced concrete beams have good seismic performance. The level of effective prestress and cross section of CFRP prestressed prisms had a little influence on the bearing capacity, the ductility and energy dissipation capacity of CFRP prestressed prisms reinforced concrete beams.

Flexural Behavior of Prestressed Concrete Beams with CFRP(Carbon Fiber Reinforced Plastic) Tendons (CFRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 휨거동)

  • 조병완;태기호;최용환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.639-644
    • /
    • 2000
  • Prestressing steels are susceptible to corrosion, which is considered the major reason in the deterioration of prestressed concrete structures. To solve this problem, many research have been made to utilize new type of tendons. FRP tendons have many advantages compared to steel tendons. However, FRP tendons have some disadvantages, such as no plastic behavior. This study focused on the flexural behavior of prestresssed concrete beams which is fabricated by post-tensioning method with CFRP (Carbon Fiber Reinforced Plastic) tendons. Th results drawn from the study, prestressed concrete beams with CFRP tendons have higher flexural cracking load, flexural yielding load, and flexural fracture load. While displacement at the fracture stage is lower compared to prestressed concrete beams with steel tendon. Excessive steel reinforcement lead lower ductility index. So, appropriate reinforcement guideline is needed. Further more, prestressed concrete beams with CFRP tendons can have sufficient ductility index when ruptured by crushing of concrete or used unbonded tendon. Therefore, the best design method for prestressed concrete beams with CFRP tendons is over-reinforcement, and use of unbonded tendon.

  • PDF

Analytical Study on the Prestress Losses of Prestressed Concrete Bridges (PSC 교량의 프리스트레스 손실에 관한 해석적 연구)

  • Kim, Woon-Hak;Ra, Jeong-Kyoun;Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.131-138
    • /
    • 2003
  • This paper presents an analytical prediction of the prestress losses of prestressed concrete bridges. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete bridges considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. The proposed numerical method for the prestress losses of prestressed concrete bridges is verified by comparison with reliable experimental results.

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.