• Title/Summary/Keyword: Prestress effect

Search Result 93, Processing Time 0.023 seconds

The Evaluation of Structural Behavior of PSC I Type Girder Bridge through Material Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 PSC I Typed 거더 교량의 구조거동 분석)

  • Sim Jongsung;Ju Minkwan;Kim Gyuseon;Moon Doyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.528-531
    • /
    • 2004
  • Nowadays, many of PSC bridges has constructed because high performance and long span bridge is required. Therefore, it is required that the evaluation of PSC bridges which retain various structure performance. In this study, nonlinear FEM analysis was performed with two parameter, concrete compressive strength and effective prestress force which is dominant factor for evaluating structural behavior of PSC bridge. Concrete compressive strength was adapted between 30Mpa and 100Mpa and effective prestress force was used the value which is considered effective rate for time-dependant effect. In the result of this study, it was showed that concrete compressive strength and effective prestress force is important factor for evaluating structural behavior of PSC bridge.

  • PDF

Experimental Study on Flexural Behavior of RC Slabs with Expansive Additives (팽창재를 혼입한 철근콘크리트 슬래브의 휨 거동에 관한 실험적 연구)

  • 박홍용;김철영;최익창;배상욱;이호석
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.31-40
    • /
    • 2000
  • This study aims to improve serviceability of concrete by inducing chemical prestress with the application of expansive additives for concrete. For this purpose, material tests and 4 point-bending tests of RC slabs were performed to verify the effect of expansive additives on the concrete. and the critical aspects of the structural behavior were investigated. The results of the material tests show that the optimal proportion of expansive additives is 13% of total cement weigth and the properties of expansive concrete in that proportion are the same as those of plain concrete. Both the experimental cracking load and service load of the expansive concrete slabs are increased in comparison with those of the plain concrete. In addition to the above results, the deflection of expansive concrete is smaller than that of plain concrete, and permanent strains resulting from cyclic load are decreased. It can be concluded that the use of expansive additives to induce chemical prestress in RC slabs greatly improves the serviceability.

Non-linear stability analysis of a hybrid barrel vault roof

  • Cai, Jianguo;Zhou, Ya;Xu, Yixiang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.571-586
    • /
    • 2013
  • This paper focuses on the buckling capacity of a hybrid grid shell. The eigenvalue buckling, geometrical non-linear elastic buckling and elasto-plastic buckling analyses of the hybrid structure were carried out. Then the influences of the shape and scale of imperfections on the elasto-plastic buckling loads were discussed. Also, the effects of different structural parameters, such as the rise-to-span ratio, beam section, area and pre-stress of cables and boundary conditions, on the failure load were investigated. Based on the comparison between elastic and elasto-plastic buckling loads, the effect of material non-linearity on the stability of the hybrid barrel vault is found significant. Furthermore, the stability of a hybrid barrel vault is sensitive to the anti-symmetrical distribution of loads. It is also shown that the structures are highly imperfection sensitive which can greatly reduce their failure loads. The results also show that the support conditions pose significant effect on the elasto-plastic buckling load of a perfect hybrid structure.

Analysis of Multi-Story Prestressed Concrete Structure Considering the Effect of Construction Stage (시공단계의 영향을 고려한 프리스트레스 콘크리트 다층 구조물의 해석)

  • Jeon, Chan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.213-223
    • /
    • 2001
  • This paper presents an analytical procedure for the time-dependent analysis of the multi-story prestressed concrete structure under the construction stage. To account for the actual structural behavior, the procedure considers the effects due to the construction interval and the time-dependent losses of prestress at every construction step on the entire structural response. A numerical study is performed to demonstrate the general validity of the approach and to quantitatively evaluate the effects resulted from the time-dependent behaviors during construction. Recommendations and conclusions are developed by comparisons with structural responses using the present and conventional methods of analysis. The comparative results show that both effects of sequential construction and time-dependent prestress losses should be considered for the construction stage analysis.

  • PDF

Nonlinear stability analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Zhang, Qian;Jiang, Youbao;Xu, Yixiang;Feng, Jian;Deng, Xiaowei
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.287-296
    • /
    • 2017
  • The buckling capacity of a radially retractable hybrid grid shell in the closed position was investigated in this paper. The geometrically non-linear elastic buckling and elasto-plastic buckling analyses of the hybrid structure were carried out. A parametric study was done to investigate the effects rise-to-span ratio, beam section, area and pre-stress of cables, on the failure load. Also, the influence of the shape and scale of imperfections on the elasto-plastic buckling loads was discussed. The results show that the critical buckling load is reduced by taking account of material non-linearity. Furthermore, increasing the rise-to-span ratio or the cross-section area of steel beams notably improves the stability of the structure. However, the cross section area and pre-stress of cables pose negligible effect on the structural stability. It can also be found that the hybrid structure is highly sensitive to geometric imperfection which will considerably reduce the failure load. The proper shape and scale of the imperfection are also important.

Longitudinal Vibration Mechanism of Grouted PSC Tendon (부착식 PSC 텐던의 종진동 메카니즘)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.261-267
    • /
    • 2011
  • This study reveals the longitudinal vibration mechanism of tendon embedded in a prestressed concrete. The extensional and torsional displacements of the strand are coupled, and the applied prestress level of tendon affects not only axial rigidity but also torsional rigidity. Measuring the elastic wave velocity of tendon, the applied prestress level of tendon could be evaluated. This is because the elastic wave velocity is a function of extensional and torsional rigidity. Using the experimental results for the six prsteressed concrete beams with different prestress levels, the longitudinal vibration mechanism and the effect of prestress level have been examined. To estimate the system ridigities of tendon, a system identification algorithm has been newly developed. The estimated system rigidities have been compared with the available results of related previous study.

Chemically Prestressed Precast Concrete Box Culvert with Expansive Additives

  • Park, Hong-Yong;Kim, Chul-Young;Park, Ik-Chang;Bae, Sang-Wook;Ryu, Jong-Hyun
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Although portland cement concrete is one of the most universal construction materials, it has some disadvantage such as shrinkage, which is an inherent characteristic. Because of this shrinkage, combined with the low tensile strength of the material, cracks of varying sizes can be found in every reinforced concrete. To prevent this cracking, keeping the concrete in compression by mechanical prestress has been used. This study discusses application of expansive additives for concrete to improve the serviceability of precast concrete box culvert by inducing chemical prestress. For this purpose, both expansive concrete slabs and normal concrete slabs are tested to verify the effect of expansive additives. Then the failure tests of the fullscale precast box culverts were carried out and the critical aspects of the structural behavior were investigated. The result of the material testis shows that the optimal proportion of expansive additives is 13 percent of cement weight, and the properties of expansive concrete are the same as those of normal concrete in that proportion. Both the experimental cracking load and service load of the expansive concrete members are increased in comparison with those of the normal concrete, but the ultimate load is decreased slightly. In addition to the above results, the deformation of expansive concrete member is lets than that of normal concrete member, and permanent strain which results from cyclic load is decreased. It can be concluded that the use of expansive additives to induce chemical prestress in precast concrete box culvert greatly improves the serviceability.

  • PDF

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Dynamic Analysis of Prestressed Liquid Storage Tanks Considering Fluid Effect (유체의 영향을 고려한 프리스트레스트 액체저장 탱크의 동적해석)

  • 황철성;백인열
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.71-82
    • /
    • 1999
  • An axisymmetric shell element which includes the effects of the meridional and circumferential cable prestresses is developed. The fluid-structure interaction is expressed as added mass effect which is in proportion to the acceleration of the structure in interface surface. The added mass is obtained by using finite element method under the assumption that the fluid is invicid, incompressible and irrotational. It is coded for personal computer by the maximum use of axisymmetic properties and the dynamic analysis are performed under seismic exitations. A ring element makes the characteristics of the axisymmetric shell to be fully utilized. The elgenvalue solutons under the initial prestresses and the internal fluid are well agreed with the exact solutions and references by using under 20 elements. The eigenvalues are decreased along the increasing the height of internal fluid and these effects are dominant under the lower wave numbers. The results of the seismic analysis show that the radial deflection under the meridional prestress is a little larger than that under the circumferential prestress.

  • PDF

FE-model Update for System Identification of PSC Girde (민감도 분석을 통한 프리스트레스 콘크리트 거더의 유한요소모델 개선)

  • Ho, Duc-Duy;Lee, So-Young;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.425-428
    • /
    • 2009
  • This paper presents a sensitivity-based finite element (FE)-model update procedure for prestressed concrete (PSC) girder bridge model using vibration test results. Firstly, the stiffness parameters of the structure such as flexural rigidity of concrete and flexural rigidity of tendon are chosen as updating parameters. Next, the numerical frequencies of first two bending modes are calculated using a three-dimensional FE model which is established for the PSC girder. Then, the corresponding experimental frequencies which are obtained from forced vibration tests are selected. In order to perform the model update, the eigensensitivity-based method is employed. Finally, the effect of prestress-loss on the stiffness parameters is evaluated.

  • PDF