• Title/Summary/Keyword: Pressurized water reactor

Search Result 479, Processing Time 0.028 seconds

OVERVIEW OF HEALTH PHYSICS STUDIES ON TRITIUM BETA RADIATION (삼중수소 베타방사선에 관한 보건물리 연구의 적용)

  • Hwang, Sun-Tae;Hah, Suk-Ho
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.75-85
    • /
    • 1994
  • As we enter the 2000s, there are four nuclear power units of the pressurized heavy water reactor-type in the commercial operation at the Wolsung Nuclear Power Plant(NPP) site where a larger amount of tritium ($\^$3/H) is released inevitably to the site environment. This radioctive nuclide is easily distributed throghout our environment because of its ubiquitous form as tritiated water (HTO) and its persistence in the environment. Tritum has certain characterisitics that present unique challenges for beta radiation dosimety and health risk assesment. In this paper, therefore, a variety of matters on tritium are considered and reviewed in terms of its characteristics and sources, metabolism and dosimetry, microdosimetry, radiobiology, risk assessment, and transport and cycling in the environment, etc.

  • PDF

EELS and electron diffraction studies on possible bonaccordite crystals in pressurized water reactor fuel CRUD and in oxide films of alloy 600 material

  • Chen, Jiaxin;Lindberg, Fredrik;Wells, Daniel;Bengtsson, Bernt
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.668-674
    • /
    • 2017
  • Experimental verification of boron species in fuel CRUD (Chalk River Unidentified Deposit) would provide essential and important information about the root cause of CRUD-induced power shifts (CIPS). To date, only bonaccordite and elemental boron were reported to exist in fuel CRUD in CIPS-troubled pressurized water reactor (PWR) cores and lithium tetraborate to exist in simulated PWR fuel CRUD from some autoclave tests. We have reevaluated previous analysis of similar threadlike crystals along with examining some similar threadlike crystals from CRUD samples collected from a PWR cycle that had no indications of CIPS. These threadlike crystals have a typical [Ni]/[Fe] atomic ratio of ~2 and similar crystal morphology as the one (bonaccordite) reported previously. In addition to electron diffraction study, we have applied electron energy loss spectroscopy to determine boron content in such a crystal and found a good agreement with that of bonaccordite. Surprisingly, such crystals seem to appear also on corroded surfaces of Alloy 600 that was exposed to simulated PWR primary water with a dissolved hydrogen level of $5mL\;H_2/kg\;H_2O$, but absent when exposed under $75mL\;H_2/kg\;H_2O$ condition. It remains to be verified as to what extent and in which chemical environment this phase would be formed in PWR primary systems.

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.829-841
    • /
    • 2018
  • An experiment was conducted for the OECD/NEA ROSA-2 Project using the large-scale test facility (LSTF), which simulated a 17% hot leg intermediate-break loss-of-coolant accident in a pressurized water reactor (PWR). In the LSTF test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing, and water remaining occurred on the upper core plate in the upper plenum. Results of the uncertainty analysis with RELAP5/MOD3.3 code clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges. For studying the scaling problems to extrapolate thermal-hydraulic phenomena observed in scaled-down facilities, an experiment was performed for the OECD/NEA PKL-3 Project with the Primarkreislaufe Versuchsanlage (PKL), as a counterpart to a previous LSTF test. The LSTF test simulated a PWR 1% hot leg small-break loss-of-coolant accident with steam generator secondary-side depressurization as an accident management measure and nitrogen gas inflow. Some discrepancies appeared between the LSTF and PKL test results for the primary pressure, the core collapsed liquid level, and the cladding surface temperature probably due to effects of differences between the LSTF and the PKL in configuration, geometry, and volumetric size.

Analysis of multiple spurious operation scenarios of Korean PHWRs using guidelines of nuclear power plants in U.S.

  • Kim, Jaehwan;Jin, Sukyeong;Kim, Seongchan;Bae, Yeonkyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1765-1775
    • /
    • 2019
  • Multiple spurious operations (MSOs) mean multiple fire induced circuit faults causing an undesired operation of one or more systems or components. The Nuclear Energy Institute (NEI) of the United States published NEI 00-01 as guidelines for solving MSOs. And this guideline includes MSO scenarios of pressurized water reactor (PWR) and boiling water reactor (BWR). Nuclear power plant operators in U.S. analyzed MSOs under MSO scenarios included in NEI 00-01 and operators of PWRs in Korea also analyzed MSOs under the scenarios of NEI 00-01. As there are no pressurized heavy water reactors (PHWRs) in the United States, MSO scenarios of PHWRs are not included in the NEI 00-01 and any feasible scenarios have not been developed. This paper developed MSO scenarios which can be applied to PHWRs by reviewing the 63 MSO scenarios included in NEI 00-01. This study found that seven scenarios out of the 63 MSO scenarios can be applied and three more scenarios need to be developed.

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test (가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

Reliability Evaluation for the Advanced Pressurized water Reactor 1400 (신형경수로 1400을 위한 신뢰성 평가)

  • 강영식
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.125-134
    • /
    • 2001
  • The Advanced Pressurized rater Reactor 1400(APR1400) system is advanced of the successful Korean Nuclear Power Plants(KSNP) design which meets functional needs for safety enhancement reliability improvement, and control in the human-computer monitoring system. Therefore this paper describes the scoring model in order to justify the reliability and safety in APR 1400 under uncertainty. The structure of this paper consists of the human engineering, risk safety, quality function, safety organization management factors of the qualitative factors in chapter 2, and the expectation results of the normalized scoring model in chapter 3. Finally, the proposed reliability model have provided the technical flexibility not only for functional control fields but also for accidents protection systems in APR 1400 under uncertainty.

  • PDF

Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 SEWGS 공정을 위한 WGS 촉매의 반응특성)

  • Kim, Ha-Na;Lee, Dong-Ho;Lee, Seung-Yong;Hwang, Taek-Sung;Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2012
  • To check effects of operating variables on reaction characteristics of WGS catalyst for SEWGS process, water gas shift reaction tests were carried out in a pressurized fluidized bed reactor using commercial WGS catalyst and sand(as a substitute for $CO_2$ absorbent) as bed materials. Simulated syngas(mixed with $N_2$) was used as a reactant gas. Operating temperature was $210^{\circ}C$ and operating pressure was 20 bar. WGS catalyst content, steam/CO ratio, gas velocity, and syngas concentration were considered as experimental variables. CO conversion increased as the catalyst content and steam/CO ratio increased. CO conversion at fluidized bed condition was higher than that of fixed bed condition. However, CO conversion were maintained almost same value within the fluidized bed condition. CO conversion decreased as the syngas concentration increased. The optimum operation condition was confirmed and long time water gas shift reaction test up to 24 hours at the optimum operating conditions was carried out.

Frictional Characteristics of Stainless Steel Lubricated with Pressurized Water at High Temperature (고온 고압하에서 물로 윤활되는 스테인레스 강의 마찰 특성)

  • 이재선;김지호;김종인
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • The 440C stainless steel is used for ball bearings and bevel gears in the control rod drive mechanism for the integral reactor, SMART. The friction characteristics of 400C stainless steel a investigated in sliding motion using the reciprocating tribometer which can simulate the operating conditions of the control rod drive mechanism. Highly purified water is used as lubricant, and the water is heated and pressurized in the autoclave. Friction force on the reciprocating specimens is measured by the load cells and transformed into friction coefficient. It is verified that frictional characteristic of the 440c steel is not drastically changed up to operating temperature and variation of friction coeffcient at operating temperature from room temperature to 160$^{\circ}C$ is within 5%.