• Title/Summary/Keyword: Pressureless-Sintered

Search Result 110, Processing Time 0.029 seconds

Microstructures and Mechanical Properties of Pressureless and Spark Plasma Sintered ZrO2(3 mol%Y2O3) Bodies

  • Shin, Na-Young;Han, Jae-Kil;Lee, Hae-Hyoung;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.140-144
    • /
    • 2005
  • The microstructures and mechanical properties of Tetragonal Zirconia Polycrystals (TZP) sintered bodies, which made by pressureless and spark plasma sintering techniques, were investigated using XRD, SEM, and TEM techniques. In the spark plasma sintered samples, the TZP grains were equiaxed type including many sub-grain boundaries regardless of sintering conditions. The biaxial strength of TZP having an average of 80 nm grains in diameter was high in value with 1025 MPa, but fracture toughness showed a low value due to the absence of a fracture toughening mechanism such as transformation toughening. In the Pressureless Sintered (PLSed) samples, the grain size of TZP was strongly dependent on the sintering temperature; i.e., it gradually increased as the sintering temperature increased. The value of fracture toughness increased as the grain size increased by the stress-induced phase transformation and Borne crack deflection.

The Effect of Sintering Condition On Tribological Behavior in the Cu-Base Sintered Friction Materials (동계 소결마찰재의 소결조건에 따른 마찰특성 고찰)

  • 김상호;김기열;정진현;이범주;정동윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.53-61
    • /
    • 1997
  • The effect of sintering condition on tribological behavior in the Cu-base sintered friction materials was studied through pin-on-disk type wear tester. Especially, the experiment was focused on making a comparative study between presstwed sintering and pressureless sintering. Pressureless sintering process showes more stable friction coefficient and lower wear rate than pressure sintering process. This result is related to pore size and density of pore in the sintered materials.

  • PDF

Microstructures and Fracture Characteristic of Pressureless-Sintered DyNbO4 body (상압소경에 의해 제조된 DyNbO4 소결체의 미세조직과 파괴특성)

  • 김기만;안종관;이병택
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.148-152
    • /
    • 2002
  • The microstructures and indentation fracture of pressureless-sintered $DyNbO_4$ crystalline were investigated as a basic study for the application of weak phase of fibrous monolithic composites. They were comprised with many lamella twins as well as micro-cracks at the grain boundaries. The hardness at room temperature was remarkably low value(575 Hv) due to the low relative density and existence of microcracks at grain boundaries. The main fracture mode was a typical intergranular fracture, and showed remarkable micro-cracking effect. The heavy plastic deformation was observed around the site of indentation. In addition, the $DyNbO_4$ was expected to apply as a weak phase in the fibrous monolithic composites because of the low hardness and easily plastic deformation that could be led the preferable pulled-out and microcracking toughening under the failure.

Preparation of Alumina Ceramics by Pressureless Powder Packing Forming Method (II) Characterization of Sintered Body Fabricated by Pressureless Powder Packing Forming Method (무가압 분말 충전 성형법을 이용한 알루미나 세라믹스의 제조 (II) 무가압 분말 충전 성형법에 의해 제조된 소결체 특성 관찰)

  • 박정형;성재석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.113-119
    • /
    • 1995
  • The green body was fabricated by a new forming method, pressureless powder packaing forming method, and the characteristics of sintered specimen were investigated. It was found that alumina ceramics prepared by the present method showed porous structure with narrow pore size distribution, and in case of abrasive powder sintered body, compared with dry-pressed specimen, had the nearly same density. Especially, the specimen prepared with spray-dried granules showed the characteristic that granules were not either deformed or fractured during forming and sintering process. Therefore, it was found that this new forming method was effective method in fabrication of porous ceramics on account of easy control of porosity and pore size and its high thermal stability.

  • PDF

Concentration of Liquid-phase in the Surface Region and Microstructural Change in Pressureless Sintered$\beta$-SiC (상압소결 $\beta$-SiC에 있어서 표면부에서의 액상집중과 미세구조의 변화)

  • Lee, Jong-Kook;Yang, Gwon-Seung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.921-927
    • /
    • 1996
  • The liquid-phase concentration from the interior to the surface region and its influence on the microstructural changes were investigated in pressureless sintered $\beta$-SiC Surface reaction-layer was formed by reaction of packing powder and volatile components on the surface during sintering which was induced the concentration of liquid-phase in the surface regions. The microstructural changes between the surface region and the interior were appeared in sintered specimen which was resulted from the difference of liquid-phase content during sintering. Microstructural changes were observd with the depth of about 250${\mu}{\textrm}{m}$ from he surface. The grain size and aspect ratio of SiC in the interior are larger than those in the surface region and the rate of transforma-tion of $\beta$-to $\alpha$-SiC during sintering is higher in the interior than that in the surface region.

  • PDF

Fabrication of Sintered Compact of Fe-TiB2 Composites by Pressureless Sintering of (FeB+TiH2) Powder Mixture

  • Huynh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.282-286
    • /
    • 2016
  • A sintered body of $TiB_2$-reinforced iron matrix composite ($Fe-TiB_2$) is fabricated by pressureless-sintering of a mixture of titanium hydride ($TiH_2$) and iron boride (FeB) powders. The powder mixture is prepared in a planetary ball-mill at 700 rpm for 3 h and then pressurelessly sintered at 1300, 1350 and $1400^{\circ}C$ for 0-2 h. The optimal sintering temperature for high densities (above 95% relative density) is between 1350 and $1400^{\circ}C$, where the holding time can be varied from 0.25 to 2 h. A maximum relative density of 96.0% is obtained from the ($FeB+TiH_2$) powder compacts sintered at $1400^{\circ}C$ for 2 h. Sintered compacts have two main phases of Fe and $TiB_2$ along with traces of TiB, which seems to be formed through the reaction of TiB2 formed at lower temperatures during the heating stage with the excess Ti that is intentionally added to complete the reaction for $TiB_2$ formation. Nearly fully densified sintered compacts show a homogeneous microstructure composed of fine $TiB_2$ particulates with submicron sizes and an Fe-matrix. A maximum hardness of 71.2 HRC is obtained from the specimen sintered at $1400^{\circ}C$ for 0.5 h, which is nearly equivalent to the HRC of conventional WC-Co hardmetals containing 20 wt% Co.

Phase and Microstructure of SiC-AlN Ceramics Prepared by Pressureless Sintering (상압소결에 의하여 제조된 SiC-AlN 세라믹스의 상 및 미세구조)

  • Choi, Woong;Lee, Jong-Kook;Cho, Duk-Ho;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1308-1314
    • /
    • 1995
  • Changes in phase and microstructure were investigated in the SiC-AlN ceramics prepared by pressureless sintering using yttrium aluminum garnet (YAG) as a sintering aid at 200$0^{\circ}C$ and 210$0^{\circ}C$. The SiC/AlN ratio made a remarkable difference in densification, phase relations and the morphology of grains. In the AlN-rich composition, major phase was 2H and microstructure was composed of the densified equiaxed grains irrespective of the sintering temperatures. While those sintered at 200$0^{\circ}C$ were porous with major phase being 3C, the rod-like and the equiaxed grains were coexisted when sintered at 210$0^{\circ}C$ in the SiC-rich composition.

  • PDF

Wear Properties of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites manufactured by Hot Pressing (가압소결법으로 제조된 알루미나 단섬유 보강 청동기지 복합재의 마모특성)

  • Choi, Jun-Ho;Huh, Moo-Young
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.398-409
    • /
    • 1995
  • The wear properties of the alumina short fiber reinforced tin-bronze matrix composites manufactured by hot pressing was studied at the room temperature and $350^{\circ}C.$ The wear loss of various specimens having different constituent and different density was examined by a pin-on-disc type wear testing machine. The results were discussed by the observation of the worn surface morphology and the analysis of the composition on the worn surfaces. Since the reinforced effect of the alumina fiber on the wear resistance was dependent on the strength of alloy matrix, the pressureless sintered composites having a lower matrix strength showed a marked increase in wear resistance by the fiber reinforcement. As the wear condition became severe, the fiber reinforcement was more effective. The delamination on the wear surface was observed in the pressureless sintered specimens having pores which are related to the initiation and the propagation of cracks. However, the wear mechanism acting on a big failure area was not found on the wear surfaces of the hot pressed specimens having a few pores.

  • PDF

Properties of Pressureless Sintered SiC-$TiB_2$ Electroconductive Composites (무가압 소결법에 의한 SiC-$TiB_2$계 도전성 복합체의 특성)

  • Park, Mi-Lim;Ju, Jin-Young;Shin, Yong-Deok;So, Byung-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.118-122
    • /
    • 2001
  • The ${\beta}-SiC+TiB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density is over 78.83% of the theoretical density and increased with increasing sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 140 MPa for composites sintered at $1900^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest of 4.07 GPa at $1900^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 4.07 $MPa{\cdot}m^{1/2}$ for composites at $1900^{\circ}C$. The electrical resistivity was measured by the Pauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).

  • PDF

Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts (PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성)

  • Oh, Bok-Hyun;Ma, Chung-Il;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.