• Title/Summary/Keyword: Pressure-based Method

Search Result 2,757, Processing Time 0.036 seconds

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

Flying Characteristics of Running Tape above Rotating Head (I) (회전헤드에 대한 주행테이프의 부상특성 ( I ))

  • 민옥기;김수경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.523-536
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the numerical simulation and the experiment. The scope of analysis is confined to the phenomena of two dimensional elasto hydrodynamic lubrication between the protruded bump on a rotating cylinder and the running tape. This model is based on the elastic deformation equation of plate and shell and Reynolds equation. Finite difference method is employed as a numerical technique to calculate (1) the distribution of pressure between the running tape and rotating bump and (2) the vertical deformation of elastic thin tape over he rotating bump under hydrodynamic pressure. In numerical analyses, the effects of bump size on flying characteristics of the tape were evaluated and examined considering the influence of tension and stiffness of tape.

Numerical Simulation of Laminar Reacting Flows Using Unstructured Finite Volume Method With Adaptive Refinement

  • Kang, Sung-Mo;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2001
  • A pressure-based, unstructured finite volume method has been applied to couple the chemical kinetics and fluid dynamics and to capture effectively and accurately the steep gradient flame field. The pressure-velocity coupling is handled by two methodologies including the pressure-correction algorithm and the projection scheme. A stiff, operator-split projection scheme for the detailed nonequilibrium chemistry has been employed to treat the stiff reaction source terms. The conservative form of the governing equations are integrated over a cell-centered control volume with collocated storage for all transport variables. Computations using detailed chemistry and variable transport properties were performed for two laminar reacting flows: a counterflow hydrogen-air diffusion flame and a lifted methane-air triple flame. Numerical results favorably agree with measurements in terms of the detailed flame structure.

  • PDF

A Study on Capacity Selection of Accumulator by Mathematical Model in Hydraulic Regenerative Brake System (수학적 모델에 의한 유압 재생 브레이크 시스템의 축압기 용량 선정에 관한 연구)

  • 이재구;함영복;김도태;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.48-55
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that control hasty surge pres-sure. This study suggests a method to select the capacity of accumulator to control surge pressure to a desired degree. The selection method is based upon a trial and error approach and computer simulation. A mathematical dynamic model of the system was derived and the parameters in the model were identified from experimental data. A series of computer simulation were done for the brake action. The results of the simulation work were compared with those of experiments. These results of the computer simular-tion and experiments show that the proposed method can be applied effectively to control the surge pressure of the hydraulic regenerative brake systems.

  • PDF

Spring Modeling for the Passive Earth Pressure Acting on the Integral Abutment Bridge (일체식교대 교량에 작용하는 수동토압의 스프링 모델링)

  • 정재호;홍정희;유성근;윤순종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.420-427
    • /
    • 2002
  • In this paper, a simplified structural spring model of integral abutment bridge is proposed to account for the passive earth pressure due to the change of temperature. The magnitude of earth pressure acting on integral bridge abutment mainly depends on the amount and shape of displacement of abutment according to the thermal expansion of superstructure. The proposed simplified model is developed based on the possible displacement shape of integral abutment bridge. Performing the direct stiffness method, the analysis is done by using the proposed method and the results of new model is compared with those of conventional design approach. The study show that it may be possible to obtain more rational and economical design values for integral abutment bridge by applying the proposed design method.

  • PDF

Nondestructive Characterization Evaluation by Time-Frequency Analysis on Pressure Vessel Piping with Corrosion (압력용기용 부식 배관의 시간-주파수 해석에 의한 비파괴적 특성 평가)

  • Nam, K.W.;Kim, J.W.;Ahn, S.H.;Park, I.D.;Lee, S.S.;Park, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.290-295
    • /
    • 2004
  • In this study, the pressure vessel piping with corrosion used during long term were investigated from the time-frequency analysis method. The damage of piping could be evaluated the attenuation factor by ultrasonic parameters such as center frequency and echo waveform. Based on NDE analysis by time-frequency analysis method, it should also be possible to evaluate from various damages and defects in piping members.

  • PDF

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

The Calculation and Design Method of Active Earth Pressure with Type of Gravity Structures (중력식 구조물의 형태에 따른 주동토압 산정과 설계법 제안)

  • Kim, Byung-Il;Jeong, Young-Jin;Kim, Do-Hyung;Lee, Chung-Ho;Han, Sang-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.47-63
    • /
    • 2014
  • In this study theories of earth pressure such as Rankine, Coulomb, Trial Wedge, Improved Trial Wedge, used in the design for onshore and offshore structures, are analyzed and the characteristics of loaded pressure to virtual back (wall, plane) and wall surface in accordance with the structure type are suggested. To investigate characteristics of earth pressure, gravity retaining wall with inclined angle and cantilever wall with inclined ground are movilized for onshore structures and caisson and block type quay wall are mobilized for offshore structures. Based on various theories, the earth pressure applied angle(wall friction angle) and sliding angle toward the wall, which is influenced by the heel length, are calculated and compared. In the case of long heel, the pressure by Rankine's method in virtual plane and the mobilized angle are most reasonably estimated by the ground slope, and in the case of short heel, the pressure by Coulomb's method and the mobilized angle by the angle of wall friction. In addition, the sliding angle toward the wall estimated by the improved trial wedge method is large than the value of Rankine's method. Finally, in this study the reasonable method for calculating the pressure and the mobilized angle that can be applied to the routine design of port structures is proposed. The proposed method can decide the earth pressure with length of a heel and a self weight of retaining wall according to sliding angle toward the wall.

Development and Calibration of a Seven-Hole Pressure Probe (7공 압력프로브의 교정 및 개발)

  • Yang, Jae-Hun;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • The present study was carried out in order to develope a seven-hole pressure probe which is able to measure high flow angles. The seven-hole pressure probe is a non-nulling, directional velocity probe used for measuring three dimensional flow that having high flow angles. A 4 mm diameter seven-hole conical pressure probe was manufactured with a cone angle of 70$^{\circ}$. The probe was comprised of seven 1 mm diameter stainless steel tubes packed close together and fitted into an outer stainless steel sleeve. The calibration procedure is based on the use of the Callington's polynomial curve-fit method. The validity of the seven-hole conical pressure probe is demonstrated by comparisons with hot-wire data.

  • PDF

Multi-layered neural network-based pressure curve estimation for hydroforming (다층 신경회로망 기법을 이용한 하이드로포밍 공정의 성형압력곡선추정)

  • 현봉섭;김재선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.607-612
    • /
    • 1992
  • For hydroforming process, determination of back-up fluid pressure in chamber is one of the most essential tasks. In this paper, we present a back-up pressure estimation system which estimates the back-up pressure of hydroforming process utilizing a multi-layered neural network. The neural network learns the nonlinear relation ship between the back-up pressure and the geometric state variables of hydroforming process. The proposed method does not necessitate sophisticated analysis on hydroforming process but some geometric intuition. The experimental results show that the neural network well approximates the nonlinear relationship between the back-up pressure and the geometric state variables of hydroforming process, thus giving the good estimation of back-up pressure vs punch stroke curve.

  • PDF