• Title/Summary/Keyword: Pressure-Drop

Search Result 2,340, Processing Time 0.032 seconds

Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform (수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구)

  • Namgung, Hyeong-Gyu;Park, Sechan;Kim, Minhae;Kim, Soo-Yeon;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • The imbalance of air supply and the exhaust on subway platforms has led to the installation of platform screen doors in underground subway stations. This imbalance causes the accumulation of pollutants on the platform and loss of comfort due to the lack of ventilation. In this study, a floor exhaust system was optimized using computational fluid dynamics (CFD) and an optimization program. The optimized floor exhaust system was manufactured and tested experimentally to evaluate the particle collection efficiency. CFX 17.0 and HEEDS were used to analyze the flow field and optimize the principal dimensions of the exhaust system. As a result of the three-step optimization, the optimized floor exhaust system had a total height of 1.78 m, pressure drop of 430 Pa, and particle collection capability of 61%. A fine dust particle collection experiment was conducted using a floor exhaust system that was manufactured at full scale based on the optimized design. The experiment indicated about 65% particle collection efficiency. Therefore, the optimized design can be applied to subway platforms to draw in exhaust air and remove particulate matter at the same time.

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.

A Study on Drop Shaft Bottom of Maximum Pressure of the Deep Tunnel by Stilling Basin of Depth (대심도 터널의 수직 유입구 감세지 깊이에 따른 바닥면 최대압력 비교 연구)

  • OH, Jun Oh;Park, Jae Hyeon;Park, Chang Keun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.74-74
    • /
    • 2015
  • 최근 홍수의 특성과 피해 양상은 과거와는 다르게 변화하고 있으며, 급격한 도시화로 인하여 기존 하천유역의 저류 능력이 감소하였으며 이러한 한계를 극복하기 위하여 이미 외국에서는 대심도 터널을 활용한 홍수재해 관리방안이 오래전부터 활용되어 왔다. 본 연구에서는 대심도 터널의 유입구, 수직갱, 감세지, 배수터널과 같은 시설물 중 대심도 터널 설계 시 수직 유입구를 통해 유입되는 유량의 에너지를 완화하고 효과적으로 배수 할 수 있도록 중요한 역할을 하는 감세지의 효율적인 깊이 산정을 위하여 수리모형실험을 실시하였으며, 모형은 Froude 상사법칙을 사용하여 원형의 1/18크기로 제작하였다. 본 연구에서 실시한 감세지 모형의 깊이는 0.278 m(원형 5.0 m), 0.417 m(원형 7.5 m)이며, 각 감세지 깊이별 수직 유입구 3개소(저지수직구1, 저지수직구2, 고지수직구) 및 5가지의 유량 CASE에 대하여 감세지 바닥면 압력을 비교?분석 하였다. 수직 유입구 3개소의 설계조건에 따른 감세지 깊이별 바닥면 압력 분포 평가를 실시한 결과 저지수직구1의 감세지 깊이 0.278 m(원형 5.0m)에서는 최대 압력이 4번 지점에서 $0.075kg/cm^2$(원형 1.30 MPa)이 측정 되었으며, 0.417 m(원형 7.5m)에서는 최대 압력이 1번지점에서 $0.089kg/cm^2$(원형 1.54MPa)이 측정되었다. 또한 저지수직구2의 감세지 깊이 0.278 m(원형 5.0 m)에서는 최대 압력이 1번 지점에서 $0.074kg/cm^2$(원형 1.28 MPa)이 측정 되었으며, 0.417 m(원형 7.5 m)에서는 최대 압력이 2번지점에서 $0.088kg/cm^2$(원형 1.52 MPa)이 측정되었다. 고지수직구의 감세지 깊이 0.278 m(원형 5.0 m)에서는 최대 압력이 3번 지점에서 $0.082kg/cm^2$(원형 1.42 MPa)이 측정 되었으며, 0.417 m(원형 7.5 m)에서는 최대 압력이 1번지점에서 $0.092kg/cm^2$(원형 1.59 MPa)이 측정되었다. 본 연구에서 실시한 수리모형실험의 결과 저유량에서 고유량으로 갈수록 최대압력지점은 반시계방향으로 움직이는 것을 알 수 있으며, 이는 수직 유입구의 설계조건에 따른 수직갱에서의 회전수차에 의하여 발생하는 것으로 분석하였다. 따라서 적절한 감세지 깊이 산정을 위해서 대심도터널의 수직 유입구(유입구형태, 수직갱)의 평가가 함께 유기적으로 이루어져야 할 것으로 판단된다.

  • PDF

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

An Experimental Study for the Effect of Operating Condition of the Air Handling Unit on the Performance of Humidifying Elements (공조기 운전 조건이 가습 소자의 성능에 미치는 영향에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.326-331
    • /
    • 2018
  • Evaporative humidification using a humidifying element is used widely for the humidification of a building or a data center. The performance of a humidifying element is commonly expressed as the humidification efficiency, which is assumed to be independent of the air temperature or humidity. To verify this assumption, a series of tests were conducted under two air conditions - data center ($25^{\circ}C$ DBT, $15^{\circ}C$ WBT) and commercial building ($35^{\circ}C$ DBT, $21^{\circ}C$ WBT) - using humidifying elements made from cellulose/PET and changing the frontal air velocity from 1.0 m/s to 4.5 m/s. Three samples having a 100 mm, 200 mm, or 300 mm depth were tested. The results showed that the humidification efficiency is dependent on the air condition. Indeed, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. This suggests that a proper thermal model should account for the inlet area, where the amount of moisture transfer may be different from the other part of the humidification element. As the depth of the element increased from 100 mm to 200 mm, the humidification efficiency increased by 29%. With further increases to 300 mm, it increased by 42%. On the other hand, the pressure drop also increased by 47% and 86%.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

North Korea, Apparel Production Networks and UN Sanctions: Resilience through Informality (북한 의류 생산네트워크와 UN 제재)

  • Lee, Jong-Woon;Gray, Kevin
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.373-394
    • /
    • 2020
  • The strengthening of multilateral international sanctions against North Korea has raised questions as to how effective they are in exerting pressure on the country's economy. In this paper, we address this question by examining their impact on the country's integration into regional and global apparel production networks. North Korea has in the past decade become an increasingly competitive exporter of apparel on the basis of consignment-based processing arrangements. Official trade data shows a sharp drop in North Korean exports of clothing since the sectoral ban in 2017. There is evidence to suggest, however, that exports have continued on a more informal and clandestine basis. North Korea's integration into apparel production networks has also taken the form of the dispatch of workers to factories in China's northeastern border regions. Yet there is evidence that the recent sanctions imposed on such practices has similarly led to illicit practices such as working on visitors' visas, often with the help of Chinese enterprises and local government. The resilience of North Korea's integration into apparel production networks follows a capitalist logic and is result of the highly profitable nature of apparel production for all actors concerned and a correspondingly strong desire to evade sanctions. As such, the analysis contributes to the literature on sanctions that suggests that the measures may contribute to emergence of growing informal and illicit practices and to the role of the clandestine economy.

Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant (Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Seul;Kim, ByeongJo;Lee, JongGi;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.

Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant (글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lim, JongChoo;Lee, Seul;Kim, ByeongJo;Lee, JongGi;Choi, KyuYong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-383
    • /
    • 2011
  • The CMCs of LA and LA3 nonionic surfactants obtained from the reaction between glycidol and lauryl alcohol were found to be $0.97{\times}10^{-3}mol/L$ and $1.02{\times}10^{-3}mol/L$ respectively and the surface tensions for 1 wt% surfactant were 26.99 and 27.48 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer showed that the adsorption rate of surfactant molecules at the interface between the air and the surfactant solution was found to be relatively fast in both surfactant systems, presumably due to the high mobility of surfactant molecules. The contact angles of LA and LA3 nonionic surfactants were 27.8 and $20.9^{\circ}$ respectively and the dynamic interfacial tension measurement by a spinning drop tensiometer showed that interfacial tensions at equilibrium condition in both systems were almost the same. Also both surfactant systems reached equilibrium in 2~3 min. Both surfactant solutions showed high stability when evaluated by conductometric method and the LA nonionic surfactant system provided the higher foam stability than the LA3 nonionic surfactant system. The phase behavior experiments showed a lower phase or oil in water (O/W) microemulsion in equilibrium with an excess oil phase at all temperatures studied. No three-phase region was observed including a middle-phase microemulsion or a lamellar liquid crystalline phase.

Characteristics of Large-area PTFE Filter Coated with PTFE Nanofiber Fabricated by Roll-to-roll Equipment (Roll-to-roll 공정으로 제조한 나노섬유가 코팅된 대면적 PTFE 필터 특성)

  • Ahn, Seunghwan;Lee, Woo Jin;Kim, Yeonsang;Shim, Euijin;Eom, Hyeonjin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.613-617
    • /
    • 2022
  • The equipment for fabricating the large-area PTFE nanofiber coated-PTFE foam filter for use as filtration parts of the baghouse that removes particulate matter (PM) in industrial sites was designed and manufactured in this study. The PTFE nanofiber was coated on a commercial PTFE foam filter to increase its PM collection efficiency. The equipment and fabrication processes using a roll-to-roll system were proposed to continuously coat PTFE nanofibers on the surface of the PTFE foam filter. The electrospinning and annealing parts were designed and made by optimizing the equipment for the roll-to-roll system. The surface morphology, composition, and filtration characteristics of the large-area filter fabricated by this equipment were confirmed. PTFE nanofibers were uniformly coated on the large-area filter, and the PTFE nanofiber coated-PTFE foam filter showed PM2.5 collection efficiency of 91.79% and an appropriate pressure drop of 62 Pa with a face velocity of 1 m/min at 280 ℃.