• Title/Summary/Keyword: Pressure-Composition

Search Result 1,127, Processing Time 0.03 seconds

Cardio-pulmonary Adaptation to Physical Training (운동훈련(運動訓練)에 대(對)한 심폐기능(心肺機能)의 적응(適應)에 관(關)한 연구(硏究))

  • Cho, Kang-Ha
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.103-120
    • /
    • 1967
  • As pointed out by many previous investigators, the cardio-pulmonary system of well trained athletes is so adapted that they can perform a given physical exercise more efficiently as compared to non-trained persons. However, the time course of the development of these cardio-pulmonary adaptations has not been extensively studied in the past. Although the development of these training effects is undoubtedly related to the magnitude of an exercise load which is repeatedly given, it would be practical if one could maintain a good physical fitness with a minimal daily exercise. Hence, the present investigation was undertaken to study the time course of the development of cardio-pulmonary adaptations while a group of non-athletes was subjected to a daily 6 to 10 minutes running exercise for a period of 4 weeks. Six healthy male medical students (22 to 24 years old) were randomly selected as experimental subjects, and were equally divided into two groups (A and B). Both groups were subjected to the same daily running exercise (approximately 1,000 kg-m). 6 days a week for 4 weeks, but the rate of exercise was such that the group A ran on treadmill with 8.6% grade for 10 min daily at a speed of 127 m/min while the group B ran for 6 min at a speed of 200 m/min. In order to assess the effects of these physical trainings on the cardio-pulmonary system, the minute volume, the $O_2$ consumption, the $CO_2$ output and the heart rate were determined weekly while the subject was engaged in a given running exercise on treadmill (8.6% grade and 127 m/min) for a period of 5 min. In addition, the arterial blood pressure, the cardiac output, the acid-base state of arterial blood and the gas composition of arterial blood were also determined every other week in 4 subjects (2 from each group) while they were engaged in exercise on a bicycle ergometer at a rate of approximately 900 kg m/min until exhaustion. The maximal work capacity was also determined by asking the subject to engage in exercise on treadmill and ergometer until exhaustion. For the measurement of minute volume, the expired gas was collected in a Douglas bag. The $O_2$ consumption and the $CO_2$ output were subsequently computed by analysing the expired gas with a Scholander micro gas analyzer. The heart rate was calculated from the R-R interval of ECG tracings recorded by an Offner RS Dynograph. A 19 gauge Cournand needle was inserted into a brachial artery, through which arterial blood samples were taken. A Statham $P_{23}AA$ pressure transducer and a PR-7 Research Recorder were used for recording instantaneous arterial pressure. The cardiac output was measured by indicator (Cardiogreen) dilution method. The results may be summarized as follows: (1) The maximal running time on treadmill increased linearly during the 4 week training period at the end of which it increased by 2.8 to 4.6 times. In general, an increase in the maximal running time was greater when the speed was fixed at a level at which the subject was trained. The mammal exercise time on bicycle ergometer also increased linearly during the training period. (2) In carrying out a given running exercise on treadmill (8.6%grade, 127 m/min), the following changes in cardio·pulmonary functions were observed during the training period: (a) The minute volume as well as the $O_2$ consumption during steady state exercise tended to decrease progressively and showed significant reductions after 3 weeks of training. (b) The $CO_2$ production during steady state exercise showed a significant reduction within 1 week of training. (c) The heart rate during steady state exercise tended to decrease progressively and showed a significant reduction after 2 weeks of training. The reduction of heart rate following a given exercise tended to become faster by training and showed a significant change after 3 weeks. Although the resting heart rate also tended to decrease by training, no significant change was observed. (3) In rallying out a given exercise (900 kg-m/min) on a bicycle ergometer, the following change in cardio-vascular functions were observed during the training period: (3) The systolic blood pressure during steady state exercise was not affected while the diastolic blood Pressure was significantly lowered after 4 weeks of training. The resting diastolic pressure was also significantly lowered by the end of 4 weeks. (b) The cardiac output and the stroke volume during steady state exercise increased maximally within 2 weeks of training. However, the resting cardiac output was not altered while the resting stroke volume tended to increase somewhat by training. (c) The total peripheral resistance during steady state exercise was greatly lowered within 2 weeks of training. The mean circulation time during exorcise was also considerably shortened while the left heart work output during exercise increased significantly within 2 weeks. However, these functions_at rest were not altered by training. (d) Although both pH, $P_{co2}\;and\;(HCO_3-)$ of arterial plasma decreased during exercise, the magnitude of reductions became less by training. On the other hand, the $O_2$ content of arterial blood decreased during exercise before training while it tended to increase slightly after training. There was no significant alteration in these values at rest. These results indicate that cardio-pulmonary adaptations to physical training can be acquired by subjecting non-athletes to brief daily exercise routine for certain period of time. Although the time of appearance of various adaptive phenomena is not identical, it may be stated that one has to engage in daily exercise routine for at least 2 weeks for the development of significant adaptive changes.

  • PDF

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF

Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System (Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.187-196
    • /
    • 2005
  • Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

Effect of Oil Extraction Methods on Sterol Composition of Sesame Oil (채유방법(採油方法)이 참기름의 Sterol조성(組成)에 미치는 영향(影響))

  • Choi, Sang-Do;Kim, Hyoung-Kab
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.365-369
    • /
    • 1985
  • In order to examine the effect of oil extraction methods on the characteristics of sesame oil, the unsaponifiable matters, fractionation sterol pattern and sterol compositions of the each fraction of the oil were compared in the oil extracted by the three different extraction methods, that is, pressure extraction of roasted seed (RTP), acetone extraction of roasted seed(RTE) and acetone extraction of raw seed(RWE). The amount of unsaponifiable in RWE oil was silghly higher as 31.8mg per 1mg drying oil than that in RTP oil of 26.1mg. Sesame oils from three different extraction methods were found to contain $0.26{\sim}0.32%$ free, $0.23{\sim}0.42%$ bound, and $0.49{\sim}0.64%$ total sterol. The content of free sterol in RWE oil was higher as 0.32% than that in RTE and RTP oil of 0.26%, and that of sterylglycoside in RTE oil was lower as 0.12% than that in RTP and RWE oil of 0.23%, but that of sterylester was a little difference. The unsaponifiable matter from fractionation sterol in sesame oil by three different extraction methods was fractionated into less polor compounds, 4,4-dimethyl-, 4-monomethyl-, 4-desmethylsterol fraction by thinlayer chromatography, and sterol composition of 4-desmethylsterol fraction was analyzed by gas liquid chromatography. The major sterols were campe-, stigma-, sito-, and ${\Delta}^5-avenasterol$, but, specially, unknown sterol(RRT:1.35) was found as $23.5{\sim}26.4%$ in total sterols, The content of sitosterol, ${\Delta}^5-avenasterol$, campesterol and stigmasterol were $59.9{\sim}60.3%,\;8.1{\sim}11%,\;16.1{\sim}18.4%,\;11.6{\sim}12.8%$ of the total sterol in free sterol fraction, $37.3{\sim}46.9,\;11.6{\sim}14.2,\;6.6{\sim}9.0$, and $6.1{\sim}8.0%$ of the total sterol in sterylglycoside fraction, $55.9{\sim}59.9,\;9.2{\sim}11.4,\;17.1{\sim}18.9$, and $11.8{\sim}13.7%$ of the total sterol in sterylester fraction, and $39.3{\sim}42.9,\;13.0{\sim}17.2,\;9.1{\sim}11.0$ and $7.4{\sim}11.5%$ of the total sterol in total sterol fraction. But the effect of oil extraction methods on sterol composition in sesame oil were hardly found.

  • PDF

Synthesis of Fe­Garnet for tile Immobilization of High Level Radioactive Waste (고준위 방사성폐기물의 고정화를 위한 Fe­석류석 합성 연구)

  • ;;;Yudintsev, S. V.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.307-320
    • /
    • 2003
  • Garnet has been considered as a possible matrix for the immobilization of radioactive actinides. It is expected that Fe­based garnet be able to have the high substitution ability of actinide elements because ionic radius of Fe in tetrahedral site is larger than that of Si of Si­based garnet. Accordingly, we synthesized Fe­garnet with the batch composition of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$ and studied their phase relations and properties. Mixed samples were fabricated in pellet forms under the pressure of 400 kg/$\textrm{cm}^2$ and were sintered in the temperature range of 1100∼140$0^{\circ}C$ in atmospheric conditions. Phase identification and chemical composition of synthesized samples were analyzed by XRD and SEM/EDS. In results, where the compounds were sintered at 130$0^{\circ}C$, we optimally obtained Fe­garnets as the main phase, even though some minor phases like perovskite were included. The compositions of Fe­garnets synthesized from the batch compositions of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$, are $Ca_{2.5­3.2}$C $e_{0.3­0.7}$Z $r_{1.8­2.8}$F $e_{1.9­3.2}$ $O_{12}$ and $Ca_{2.2­2.5}$C $e_{0.8­1.0}$Z $r_{1.3­1.6}$ F $e_{0.4­.07}$ F $e_{3­3.2}$ $O_{12}$, respectively. Ca contents were exceeded and Ce contents were exceeded or depleted in 8­coodinated site, comparing to the initial batch composition. These results were caused by the compensation of the difference of ionic radius between Ca and Ce.

Mineralogical Studies of the Tourmaline for Medicinal Applications by Production Localities (본초 광물로서의 활용을 위한 산지별 전기석의 광물학적 연구)

  • Jie, Yan;Kim, Seon-ok;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • In this study, we have performed electron probe micro analyzer (EPMA), X-ray differaction (XRD), inductively coupled plasma spectroscopy (ICP), Fourier transform Raman spectroscopy (FT-Raman), far-infrared (FIR), nuclear magnetic resonance (NMR), and pH-DO Analyses for characterizing medicinal mineralogy aspect of the black tourmaline (Shantung, china), black and pink tourmaline (Minas Geraris, Brazil), black touemaline (Daeyu mine, Korea). In addition, heating effects of the tourmaline sauna as well as the effects of tourmaline powder-added soap on skin troubles have been investigated. It has been revealed that chemical composition of the tourmaline is either high in Fe-, Al-, B-rich types. Ratio of the K-Ca, Na-K, and Fe-B reflects the component change property of solid solution. $CaO/CaO+Na_2O$ and MgO/FeO+MgO ratio show high positive correlation. When tourmaline reacts with distilled water, extended reaction time DO values approximately decrease and it stabilizes at DO = 10. Otherwise, pH values increase until 6 hours and it stabilizes at pH = 8 after 24 hours. Distilled water changes to alkaline when it reacts with tourmaline powder and particles. Tourmaline showed lower absorption spectrum strength and transmittance at short wave, where absorption spectrum wavelength and strength were determined by the content of the composition elements and characteristics of crystallography. Increase of the Fe content has been confirmed to be the cause for the reduction of irradiation. For the chemical composition and spectral property of the tourmaline particle samples, it has been found that Si and Fe contents show positive correlation with Far-Infrared irradiation, while Al and Mg contents show negative correlation. For tourmaline powder, it has been confirmed that $^{17}O-NMR$ FWHM (full width at half maximum) decreases when reacts with distilled water. Tourmaline sauna (approximately $100^{\circ}C$) was found to increase $0.5-1.5^{\circ}C$ of body temperature, average of 12 heartbeat, and 10mg Hg of blood pressure. Tourmaline soap had very good aesthetic effect to skin and was confirmed to have above the average improvements to skin troubles (e.g., allergy or atopy).

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (I): with Emphasis of the Stable Isotope Studies of the Dongyang Talc Deposit (중부 옥천변성대내의 활석광화작용 (I): 동양활석광상의 안정동위원소연구를 중심으로)

  • Park, Hee-In;Lee, Insung;Hur, Soondo
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.635-646
    • /
    • 1995
  • Mineralized zone in the Dongyang talc deposits occurs on the lowest dolomite member of the Hyangsanri Dolomite belonging to the Ogcheon Supergroup. Ore bodies are emplaced as pipe-like body along the axis of minor folds plunging $40^{\circ}$ to the west developed in these dolomite layers. Amphibolite and chlorite schist are found along the upper or lower contact of all ore bodies (Kim et al., 1963; Park and Kim, 1966). Following the recrystallization and silicification of dolomite, tremolite and tabular and leafy talc(I) of the earlier stage formed, and microcrystalline talc(II) formed in the later stage. Talc(l) and tremolite formed by the reaction between dolomite and the fluid. Whereas talc (II) formed by the reaction between dolomite and fluid, or by the reaction between early formed tremolite and fluid. During the early stage of mineralization, the fluid was the $H_2O-CO_2$ system dominant in $CO_2$, In the later stage, the composition of the fluid changed to $H_2O-NaCl-CO_2$system, and finally to the $H_2O-NaCl$ system. The pressure and temperature conditions of the formation of tremolite associated with talc(I) were 1,640~2,530 bar, and $440{\sim}480^{\circ}C$, respectively. The pressure and temperature condition of talc(II) ore formation was 1,400~2,200 bar, and $360{\sim}390^{\circ}C$, respectively. These conditions are much lower than the metamorphic pressure and temperature of the rocks from the Munjuri Formation located about 5 km to the noJ:th of Dongyang talc deposit ${\delta}^{13}C$ and ${\delta}^{18}O$ values of dolomite which is the host rock of the talc ore deposit are 2.9~5.7‰ (PDB), and -7.4~l6.8‰ (PDB), respectively. These values are little higher than those from the Cambro-Ordovician limestones of the Taebaeksan region, but belong to the range of the unaltered sedimentary dolomite. ${\delta}^{18}O$and ${\delta}D$ values of the talc from Dongyang deposit are 8.6~15.8‰ (vs SMOW), and -65~-90‰ (vs SMOW), respectively, belonging to the range of magmatic origin. These values are quite different from those measured in the metamorphic rocks of Munjuri and Kyemyungsan Formation. ${\delta}^{34}S$ value of anhydrite is 22.4‰ (CDT), which is much lower than ${\delta}^{34}S$ (30‰ vs COT) of sulfate of early Paleozoic period, and indicates the possibility of the addition of magmatic sulfur to the system. Talc ores show the textures of weak foliation and well developed crenulation cleavages. Talc ore deposit in the area is concluded as hydrothermal replacement deposit formed before the latest phase of the deformations that Ogcheon Belt has undergone.

  • PDF