• Title/Summary/Keyword: Pressure- Volume Diagram

Search Result 21, Processing Time 0.028 seconds

Estimation of the Lubricating Oil Rheology at High Pressure Based on Phase Diagram

  • Rahman, Md.Z.;Ohno, N.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.85-86
    • /
    • 2002
  • For rheology investigation of lubricating oils, first phase diagrams were made from determined free volume based on density measurements and the temperature-pressure relation was estimated using the expansion coefficient of free volume and the temperature-pressure relation of the viscoelastic transition point. Next, the authors proposed the density-pressure-temperature relation and the viscosity-pressure-temperature relation of the tested oils based on the free volume and the phase diagrams. Moreover, it was shown that the Ehrenfest equation or the gradient of the phase diagram is closely related to the expansion coefficient of free volume.

  • PDF

Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor (물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

Theoretical Prediction of Lung Hyperinflation(LHI) Due to Asymmetric Pressure-Flow Characteristics of Human Airways During High Frequency Ventilation (HFV)

  • Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 1990
  • The hypothesis of asymmetric resistance to explain the phenomenon of lung hyperinflation (LHI) during hlgh frequency ventilation (HFV) was quantitatively studied. LHI was predicted by modeling the ism-volume pressure-flow (IVPF) data from 5 human subjects using the empirical Rohrer's equation. Non-steadiness during HFV was compensated by em- ploying recently proposed volume-frequency diagram. Tidal volume and ventilation frequency were 100 ml and 20 Hz, respectively. Airflow pattern was a symmetric sinusoid. The predic- tion results of mean pressure drop across the airways were averaged for those 5 subjects, and compared with zero by one-sided student's t-test. A marginally significant (P<0.1) increase in mean pressure drop was observed during HFV at low lung volumes (below FRC) , which could increase mean lung volume up to one liter When the lung volume was above FRC, no significant LHI (P >0.25) was resulted. LHI seemed to be inversely related to the lung volume. These results recommend to clinically apply HFV only at lung volumes above FRC.

  • PDF

A Parametric Analysis of Performance of Gas Turbine Combined, Split Cylinder, Constant Volume, Pressure, Temperature, Mixed Cycle Engine (가스터빈 결합, 분리실린더, 등적.등압.등온 혼합사이클 엔진성능의 변수 분석)

  • Kim Dong-Ho;Bae Jong-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1082-1091
    • /
    • 2004
  • Analyzed Parametrically was an internal combustion engine combined with gas turbine the cycle of which is splitted into compression side cylinder and expansion side one, and heat adding of which is during constant volume pressure, temperature process. The advantages of each measures were analyzed by means of thermal cycle diagram. The thermal efficiency of partial load cutting off firstly isothermal heat adding and secondly isobaric heat adding also was analyzed The authors suggested some potentials about the performance as for thermal efficiency, mean effective pressure and reducing emissions and noise supposed were the operating parameter of the engine set to some values and were some problems solved.

Performance Analysis of a Heat Pump Using Refrigerant Mixtures (II) (혼합냉매를 사용한 열펌프의 성능해석 (II))

  • Kim, M.S.;Kim, T.S.;Won, S.P.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.218-225
    • /
    • 1990
  • Studies on the performance of a heat pump using non-azeotropic refrigerant mixtures are done. In order to estimate the thermodynamic properties for the selected non-azeotropic refrigerant mixtures including R22/R152a, R22/R142b, R22/R114 and R13B1/R152a, Peng-Robinson equation of state is adopted. The pressure-enthalpy diagram and the temperature-entropy diagram are plotted for each refrigerant mixture. Considerations on the capacity modulation for the heat pump system using refrigerant mixtures are taken into. Results show that when the heating load varies, the possibility for the capacity modulation is found in the heat pump system using a compressor with constant volume flow rate. Under a constant heating capacity condition in the heat pump system, the coefficient of performance increases when the refrigerant mixtures are used. The volume flow rate decreases as the mass fraction of lower boiler increases in this case.

  • PDF

Thermoacoustic Power Generation by a Heater in a Tube with Air Current (기류가 있는 관에서 가열에 의한 열음향력의 발생)

  • 권영필;이병호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 1984
  • Thermoacoustic oscillation induced by a heater in a tube with air current is studied theoretically. Linearized perturbation equations are derived in dimensionless form under the assumption that the system is one dimensional. The equation to predict the acoustic power generation from a heating surface is derived and calculated by solving differential equations numerically. The effect of the mean velocity of the air current is illustrated. The energy conversion mechanism is shown by pressure-volume diagram like a heat engine.

  • PDF

Numerical Simulation of a Reciprocating Compressor (왕복동 압축기의 성능해석 시뮬레이션)

  • 김정우;김현진;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.475-483
    • /
    • 1993
  • A computer simulation model of a hermetic reciprocating type of refrigeration compressor has been developed. The compressor simulation model constitutes 6 control volumes, to each of which conservation laws of mass and energy are applied to yield full description of the refrigerant state along its passage. Instead of ideal gas assumption. real gas equation is employed. Some of valve-related input data required for the simulation are acquired from test bench experiments. The refrigerant states such as pressure and temperature, etc., mass flow rates, and valve motions can be predicted by the simulation. The calculated P-V diagram shows a good agreement with experimental result.

The characteristics of the Ringbom Stirling engine (Ringbom 스터링 엔진의 제작 및 특성 연구)

  • Lee, Sang-Won;Cho, Kyung-Chul;Won, Min-Young;Kim, Soo-Yun;Jung, Pyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.660-664
    • /
    • 2001
  • Ringbom Stirling engine which is a kind of low temperature difference model Stirling engine is manufactured and its characteristics are measured at some temperature differences. Pressure, displacer position and rotation speed are measured. Displacer position and rotation speed are detected by photo-sensor. The hot side of Ringbom Stirling engine is warmed by electric heater. The cold side of Ringbom Stirling engine is cooled by the air. This result may be useful for further design and manufacture of Ringbom Stirling engine. Also, it would be used as an educational material for mechanical engineering students.

  • PDF

Numerical Study of Effect of counter-pulsation on Hemodynamic Response in the ECLS (체외생명구조장치에서 역박동 방법이 혈류역학 응답에 미치는 영향에 대한 수치적 연구)

  • Kim, In-Su;Lim, Ki-Moo;Choi, Seoung-Wook;Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1660-1664
    • /
    • 2008
  • Extra-corporeal Life Support System (ECLS) is the device used in emergency cases to substitute a extracorporeal circulation in open heart surgery, cardiac arrest or in acute cardiopulmonary failure. To obtain the effect of counter-pulsation on hemodynamic response in the ECLS quantitatively, we developed cardiovascular model which consists of 12 compartment model of heldt et al. and 3 compartment model of Schreiner et al. based on windkessel approximation. We compared coronary perfusion, arterial pulse pressure, cardiac output, and left ventricular pressure-volume diagram according to flow configuration such as counter-pulsation, copulsation, and continous flow. When counter-pulsation was applied, 5% higher coronary perfusion, 26% lower pulse pressure, and 2% higher cardiac output than copulsation condition were calculated. We conclude that counter-pulsation configuration in the ECLS is hemodynamically more stable than copulsation and influences the positive effect to recover ventricles.

  • PDF

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.