• 제목/요약/키워드: Pressure wave generator

검색결과 42건 처리시간 0.025초

휴대용 압력파 발생장치를 사용한 단일관로에서의 누수탐지 연구 (Study of leak detection in a pipeline system using a portable pressure wave generator)

  • 고동원;이정섭;김진원;김상현
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.139-147
    • /
    • 2020
  • This paper suggests a nonlinear pressure consideration scheme through an unsteady pipe network analyzer for leakage detection with a portable pressure wave generator. In order to evaluate the performance of a proposal scheme, linear input pattern has been simulated and experiments had been carried out under both no leakage and one leakage conditions in a reservoir-pipeline-valve system. This method using portable pressure wave generator showed that a leakage can be detected from a reflection where a leakage is originated through time domain analysis. Meaningful similarity in pressure response between nonlinear input pattern and experimental results were found both no leakage and a leakage conditions.

고에너지배관 파단위치에 따른 배관휩과 충격파의 영향 평가 (Evaluation of Blast Wave and Pipe Whip Effects According to High Energy Line Break Locations)

  • 김승현;장윤석;최청열;김원태
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.54-60
    • /
    • 2017
  • When a sudden rupture occurs in high energy lines, ejection of inner fluid with high temperature and pressure causes blast wave as well as thrust forces on the ruptured pipe itself. The present study is to examine pipe whip behaviors and blast wave phenomena under postulated pipe break conditions. In this context, typical numerical models were generated by taking a MSL (Main Steam Line) piping, a steam generator and containment building. Subsequently, numerical analyses were carried out by changing break locations; one is pipe whip analyses to assess displacements and stresses of the broken pipe due to the thrust force. The other is blast wave analyses to evaluate the broken pipe due to the blast wave by considering the pipe whip. As a result, the stress value of the steam generator increased by about 7~21% and von Mises stress of steam generator outlet nozzle exceeded the yield strength of the material. In the displacement results, rapid movement of pipe occurred at 0.1 sec due to the blast wave, and the maximum displacement increased by about 2~9%.

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

유압관로의 주파수변화 따른 압력전파특성 (A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline)

  • 유영태;나기대;김지환
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

A SIMPLE ANALYTICAL METHOD FOR NONLINEAR DENSITY WAVE TWO-PHASE INSTABILITY IN A SODIUM-HEATED AND HELICALLY COILED STEAM GENERATOR

  • Kim, Seong-O;Choi, Seok-Ki;Kang, Han-Ok
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.841-848
    • /
    • 2009
  • A simple model to analyze non-linear density-wave instability in a sodium-cooled helically coiled steam generator is developed. The model is formulated with three regions with moving boundaries. The homogeneous equilibrium flow model is used for the two-phase region and the shell-side energy conservation is also considered for the heat flux variation in each region. The proposed model is applied to the analysis of two-phase instability in a JAEA (Japan Atomic Energy Agency) 50MWt No.2 steam generator. The steady state results show that the proposed model accurately predicts the six cases of operating temperatures on the primary and secondary sides. The sizes of three regions, the secondary side pressure drop according to the flow rate, and the temperature variation in the vertical direction are also predicted well. The temporal variations of the inlet flow rate according to the throttling coefficient, the boiling and superheating boundaries and the pressure drop in the two-phase and superheating regions are obtained from the unsteady analysis.

체외 충격파 치료술을 위한 솔레노이드 코일을 이용한 전자기식 충격파 발생기: 구성 및 음향학적 특성 (An Electromagnetic Shock Wave Generator Employing a Solenoid Coil for Extracorporeal Shock Wave Therapy: Construction and Acoustical Properties)

  • 최민주;이종수;강관석;팽동국;이윤준;조주현;임근희
    • 한국음향학회지
    • /
    • 제24권5호
    • /
    • pp.271-281
    • /
    • 2005
  • 솔레노이드 코일을 이용하여 체외 충격파 치료술에 적합한 전자기식 충격파 발생기를 구성하였다. 충격파 발생기의 충격파의 특성은 바늘형 하이드로폰을 이용하여 평가하였다 충격파 발생기 방전 전압이 8에서 18 kV로 증가할 때 측정된 충격파의 최대 양압 (P+)은 $10\~77\;MPa$사이를 비선형적으로 증가하는 것으로 나타났다. 반면, 충격파 최대 음압 (P-)은 $-3.2\~-6.8\;MPa$ 에서 변화하고 있으며, 방전 전압이 14 kV에서 -6.9 MPa로 가장 낮은 값을 보였다. 동일한 설정에서 반복 측정된 충격파의 크기 P+는 평균값의 $5\;\%$ 이내에서 변화하며, 전기 수력학적 방식 충격파 발생기 경우의 $50\;\%$ 정도와 비교하여, 매우 작은 것으로 나타났다. 시간 축에서 1 ms 동안 측정한 하이드로폰 신호로부터 충격파에 의해 야기된 음향 공동 현상, 즉, 기포의 파열 현상으로 발생된 다수의 순차적인 음향 임펄스를 관찰할 수 있었다. 웨이블렛 변환 기법을 이용하여, 충격파 강도와 밀접한 관련이 있는 것으로 알려진, 첫 번째와 두 번째 기포 파열 시간 지연을 정확히 측정하였다. 충격파 크기 P+가 10 에서 77 MPa로 증가할 때 측정된 기포 파열 지연 시간은 120부터 $700\;{\mu}s$ 로 거의 선형적으로 증가함을 관찰할 수 있었다.

해수압 진동을 이용한 파력발전 장치 및 방법 (Apparatus and Method for Wave Energy Convertor using Under-water Pressure Oscillation)

  • 송승관;박진배
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2260-2264
    • /
    • 2011
  • This paper describes the development of an wave energy convertor. We devise a new type of the wave energy convertor which generates electricity by means of under-water pressure oscillation. This wave energy convertor is installed on the seabed floor. That is, there is no exposed body on the surface of the sea. The wave energy convertor comprises an activated assembly which is adapted to be displaced in response to water pressure oscillation to vary the volume of bellows cavity and a power take off assembly which generates electricity in response to movement of the activated assembly.

진동수주형 파력발전기의 에너지 흡수효율 해석 (Numerical Analysis on Wave Energy Absorption of OWC-type Wave Power Generation)

  • 경조현;홍사영;홍도천
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.64-69
    • /
    • 2006
  • A numerical analysis is made to investigate the wave absorption efficiency of a OWC-type wave power generator. Energy absorption by an OWC(Oscillating Water Column) air-chamber is computed in regular waves, taking account of the oscillating surface-pressure, due to pressure drop, across the duct of the air chamber. The problem is formulated in the scope of potential theory and solved by the Localized Finite Element Method(LFEM), based on the classical variational principle. The efficiency of energy absorption is investigated by. changing wave conditions, sea-bottom slope and pressure drop coefficient.

유량 조절 밸브가 탑재된 진동수주형 파력발전장치의 터빈 내 유동해석을 위한 수치해석 연구 (A Numerical Study on Effects of Flow Analysis with Flow Control Valve on Turbine of OWC Type Wave Power Generator)

  • 노경철;오재원;김길원;이정희
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.801-808
    • /
    • 2021
  • In this paper, a numerical analysis was conducted on the effect of the flow control valve of a oscillation water column(OWC) type wave power generator turbine. The OWC wave power turbine operates with compressed air in the air chamber according to the change of wave height. When the wave height changes rapidly, a flow control valve is required due to overload of the turbine and reduced efficiency. Therefore, in this paper, a flow control valve with an opening angle of 60 degrees was installed in the front of the turbine, and the pressure drop, torque, and overall performance were calculated according to the change of turbine RPM and flow rate of turbine inlet. In conclusion, the flow control valve with an opening angle of 60 degrees affects when the turbine rotates at low rotation and the inlet flow rate is large. But it does not have a significant effect on overall turbine performance and it is necessary to find the optimal angle in the future works.

구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발 (Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring)

  • 임승현;이정률;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF