• 제목/요약/키워드: Pressure transfer ratio

검색결과 346건 처리시간 0.023초

직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성 (The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger)

  • 임동렬;박상일;전광민
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

수평 평활관 및 전열촉진관내 대체 냉매 R-407C의 응축 열전달 특성에 관한 연구 (Heat Transfer Characteristics of R-407C During Condensing Inside Horizontal Smooth and Micro-Fin Tubes)

  • 노건상;오후규
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.210-217
    • /
    • 1999
  • This paper reports the experimental results on heat transfer characteristics of R-22 and R-407C(HFC-32/125/134a 23/25/52 wt%) condensing inside horizontal smooth and finned tubes. The test condensers used In the study are double pipe heat exchangers of 7.5 mm ID, 9.5 mm OD smooth tube, and 60 finned micro-fin tube with 8.53 mm ID, 9.53 mm OD. Each of these tubes was 4 000 mm long tubes connected with an U-bend. These U type two-path test tubes are divided In 8 local test sections for the identification of the local condensing heat transfer characterisitcs and pressure drop, U-bend effects on condensing flows. Inlet quality is maintained 1.0, and refrigerant mass velocity is varied from 102.0 to $301.0kg/m^2{\cdot}s$. From the results, it was found that the pressure drop of the R-407C Increased, and heat transfer coefficient decreased compared to those of R-22. In comparison condensing heat transfer characteristics of micro-fm tube with those of smooth tube, increasing of condensing heat transfer coefficient was found outstanding compared to the increasing ratio of pressure drop. Furthermore, pressure drop In U-bend showed at most a 30 % compared to the total pressure drop in the test section.

주기적인 압력구배를 받는 덕트에서의 유동 및 열전달특성에 관한 연구 (A study on Flow and Heat Transfer Characteristics in a Duct with Periodic Pressure Gradient)

  • 이재헌
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.369-381
    • /
    • 1992
  • Characteristics of flow and heat transfer have been studied numerically in a square duct with a periodic pressure gradient. The flow in a duct was assumed to be fully developed and constant heat flux was imposed at the surfaces of a square duct. The distributions of axial velocity and time-space averaged temperature are investigated with angular velocity and amplitude ratio at a given Reynolds number 1000. When the periodic pressure gradient was imposed axially in a duct, the reverse flow may be occurred near the duct wall. The magnitude of this reverse flow increases as the amplitude ratio increases or as the angular frequency decreases. In the ranges of the amplitude ratio and the angular velocity in present investigation, the ratio of the periodic time space averaged temperature to the nonperiodic space averaged temperature has been found to be greater than one. This means that the cooling effect at the duct walls deteriorates with a periodic situation compared with nonperiodic one.

R-12 냉매용 냉동장치의 성능에 미치는 R-12와 R-134a 냉매의 효과 (The Effect of R-12 and R-134a Refrigerant on the Performance of Refrigeration Equipment for R-12 Refrigerant)

  • 이홍기;장동호;정용진;강형석
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.15-20
    • /
    • 2000
  • High pressure, pressure ratio, refrigerating effect, heat transfer from the condenser and the power of the compressor etc. of a self-made refrigeration equipment for R-12 are investigated when R-12 and R-134a are used as the coolants. The comparison between the performance for R-12 and that for R-134a is made. As a result, R-134a is better than R-12 in the view of high pressure, refrigerating effect and the coefficient of performance and vice versa in the view of pressure ratio, exit gas temperature from the compressor and heat transfer from the condenser.

  • PDF

2차 유동 영역에서 꺽임각 변화에 따른 주름진 사각 덕트에서의 열/물질전달 및 유동 특성 (Two dimensional flow and heat/mass transfer characteristics in rectangular wavy duct with corrugation angle)

  • 권현구;황상동;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2267-2272
    • /
    • 2007
  • The present study investigates the two dimensional flow and heat/mass transfer characteristics of wavy duct with various corrugation angles. For the heat/mass transfer coefficients, a naphthalene sublimation technique is used. Numerical analysis and wall pressure measurement show detailed two dimensional flow features. The corrugation angles change from 145$^{\circ}$ to 100$^{\circ}$. The operating Reynolds numbers based on the duct hydraulic diameter vary from 700 to 3,000. The duct aspect ratio maintains 7.3. On the pressure wall, strong flow mixing enhances heat/mass transfer coefficients at the front position. In addition, the rear side of pressure wall, the near of peak, is affected by the acceleration and the shedding of main flow. On the suction wall, however, flow separation and reattachment lead to the valley and the peak of heat/mass transfer coefficient. Also, highly increasing boundary layer at the suction wall affects the decrease of heat/masst transfer. As decreasing corrugation angles, the spanwise average Sherwood number increases and the peak or the valley positions of the local Sherwood number are varied.

  • PDF

3차원 주동변위에 따른 인접지반으로의 하중전이 (Load Transfer to the Adjacent Ground Induced by the 3-Dimensional Active Displacement)

  • 박병석;이상덕
    • 한국지반공학회논문집
    • /
    • 제31권10호
    • /
    • pp.49-60
    • /
    • 2015
  • 기존 3차원 토압연구는 벽체에 작용하는 주동토압을 단일파괴체로 가정하고 벽체의 안정성에 초점을 맞춰 3차원 토압의 크기를 구하는데 역점을 두었고, 토압의 주변지반 전이에 대한 연구는 미진하였다. 따라서 본 연구에서는 벽체의 폭과 높이의 비 즉, 종횡비를 달리하여 3차원 모형실험을 수행하고, 주변지반으로 전이되는 토압의 크기와 영향범위를 파악하였다. 주변지반으로 전이되는 토압은 종횡비에 따라 3차원 주동토압의 감소량보다 17.9~30.6% 작게 나타났으며, 연직방향 토압의 전이보다 수평방향 토압의 전이가 크게 나타났다. 토압의 전이범위는 수평방향으로 주동벽체 폭 w 기준으로 0.67~1.29w, 연직방향으로 주동벽체 높이 ${\Delta}h$기준으로 약 1.0~3.0h인 것으로 나타났다. 수평방향으로 전이되는 토압은 종횡비가 같을 때 수평방향 모두 동일한 높이에서 최대치를 나타내며, 종횡비가 증가함에 따라 토압의 최대 전이 지점이 벽체 하부에서 상부로 변화하였다. 수평방향 토압의 전이는 주동벽체 폭 w 기준으로 0.25w에서 56%~79%인 것으로 나타났으며, 연직방향 토압의 전이는 주동벽체 ${\Delta}h$기준으로 1.0~1.5h에서 50%~58%인 것으로 나타났다. 종횡비에 따라 전이되는 토압의 크기와 영향범위를 분석하고 주동변위 벽체 주변으로 전달되는 3차원 하중전이 분포도를 제시하였다.

모듈형 편평원관군 열교환기의 열전달 특성 해석 (Analysis of Geometrical Effects on Heat Transfer Characteristics in a Modular Flat Tube-Bundle Heat Exchanger)

  • 박병규;이준식
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1014-1021
    • /
    • 2005
  • Flow channels with non-circular cross-sections are encountered in a wide variety of heat exchangers. Accurate friction factor and Colburn j factor data are essential for the design and viable applications of such heat exchangers. In this study, an analysis is con ducted on heat transfer and pressure drop characteristics for tube-bundle heat exchanger with various arrangements of tubes, of which their geometry could easily be modified from a circular one in a harsh environment. The parameters investigated are aspect ratio, pitch, and inclined angle of tubes. The results obtained are: (1) Aspect ratio has larger influence on the j and f factor than pitch; (2) As aspect ratio increases, both j and f factors decrease; (3) The high performance is achieved when the pitch and aspect ratio are in the range of 1.5${\~}$2.5 and 1.25${\~}$2.0, respectively; and (4) the inclined arrangements of tubes show unfavorable results for both heat transfer and pressure drop characteristics in spite of the positive possibility of condensate removals in a latent heat recovery system.

타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구 (A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder)

  • 최재호;조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

수직 오리피스 이젝터의 혼합유동 및 산소전달 특성 (Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector)

  • 김동준;박상규;양희천
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.61-69
    • /
    • 2015
  • 본 논문은 수직 오리피스 이젝터의 혼합유동 및 산소전달 특성에 대한 실험적 연구를 목적으로 한다. 실험장치는 전동 모터-펌프, 오리피스 이젝터, 순환 수조, 공기압축기, 고속 카메라 시스템 그리고 제어 및 측정기기로 구성하였다. 측정된 구동유체 및 유입공기의 유량을 이용하여 유량비를 도출하였다. 이적터에서 분출된 혼합유동의 가시화를 통해 정성적 거동을 고찰하였으며, 용존산소 농도를 측정하여 총괄 산소전달계수를 도출하였다. 구동유체의 유량이 일정하고 압축기의 공기압이 높아지면 유량비와 산소전달계수는 증가하며, 압축기의 공기압이 일정하고 구동유체의 유량이 증가하면 유량비는 감소하지만 산소전달계수는 증가하였다. 기포의 크기에 따른 체류시간 및 확산도와 수직 혼합유동의 도달거리는 2 상의 접촉면적과 시간에 크게 영향을 미치기 때문에 산소전달율의 중요한 변수임을 유추할 수 있다.

Study on High Performance and Compact Absorber Using Small Diameter Heat Exchanger Tube

  • Yoon Jung-In;Phan Thanh Tong;Moon Choon-Geun;Kim Eun-Pil;Kim Jae-Dol;Kang Ki-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.463-473
    • /
    • 2006
  • The effect of tube diameter on heat and mass transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by both of numerical and experimental study to develop a high performance and compact absorber. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.70mm and 9.52mm. In numerical study a model of vapor pressure drop inside tube absorber based on a commercial 20RT absorption chiller/heater was performed. The effect of tube diameter, longitudinal pitch, vapor Reynolds number, longitudinal pitch to diameter ratio on vapor pressure drop across the heat exchanger tube banks inside absorber have been investigated and found that vapor pressure drop decreases as tube diameter increases, longitudinal pitch increases, vapor Reynolds number decreases and longitudinal pitch to diameter ratio increases. In experimental study, a system includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The experimental results shown that the overall heat transfer coefficient, mass transfer coefficient. Nusselt number and Sherwood number increase as solution flow rate increases. In both of study cases, the heat and mass transfer performance increases as tube diameter decreases. Among three different tube diameters the smallest tube diameter 9.52mm has highest heat and mass transfer performance.