• Title/Summary/Keyword: Pressure resistance

Search Result 2,168, Processing Time 0.027 seconds

A Study on the Resistance Property of Hard Chine Type High Speed Planing Craft (HARD CHINE형 활주 고속선의 저항특성에 관한 고찰)

  • 이창억
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.2
    • /
    • pp.1-11
    • /
    • 1983
  • The resistance property of a high speed passenger craft (: "DOL-PIN HO" designed by the author in 1972) is investigated as follows; -. The Resistance property of the craft is determined by savitsky′s method and blount-Fox′s method. The theoretical results are also compared with the full scale data. The comparison reveals that the result when using blount/fox′s method are in much closer agreement with the full scale data than savitsky′s. -. The effects of ship speed on the positions of the center of pressure and of the longitudinal center of gravity (L.C.G.) are investigated. The investigation shows that the position of L.C.G. of the craft is almost constant although the ship speed is changed. -. The effect of transom flap on the Resistance property of the craft is studied using savitsky/brown′s method. From the study it is found that the resistance of the craft is decreased and hence speed gain (about 3% of the service speed) can be obtained, when using transom flap for the craft.

  • PDF

Ballistic Resistance of an Armor Ceramic Structure against a Shaped Charge Jet As a Function of Penetration Depth

  • Hyunho Shin;Lee, Chang-Hyun;Wan Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 1999
  • The ballistic capability of an alumina-rich oxide armor ceramic against a shaped jet was characterized as a function of penetration depth in a layered target structure. The penetration resistance of the ceramic, based upon the determination of penetration velocity, was not equally realized throughout the depth of penetration. It was abnormally low at an early stage of penetration, followed by a sudden increase to reach ~16GPa thereafter. There was no apparent change in such a profile with respect to the lateral size of the specimen. Based upon 2-D flash x-ray radiography and 3-D Hull code simulation, the feasibility of forming a pressure-induced predamnaged zone in front of the jet tip was speculated to foster an increased penetration velocity in the initial stage penetration, resulting in the diminished penetration resistance. The disappearance of such a predamaged zone with penetration was interpreted to restore the resistance of the ceramic in the later penetration stage.

  • PDF

A Study on the Rolling Resistance of Trains through real Measurement (실측에 의한 열차의 주행저항에 관한 연구)

  • CHANG, Dong Il;LEE, Sung Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.47-54
    • /
    • 1996
  • Recently Sucessive progress in train technic has enabled us to constructed high-speed railways for ourselves. This caused more rapid train more pressure on a track and speedier track break-down. Especially in the construction of high-speed rails for high-speed traveling and safety accurate breaking distance is essential and not only computation of rolling resistance in theory but also verification through real measurement are important in basic material for breaking and starting load caused during the train running. In this study, we measured traveling resistance and calculated traveling resistance formula in the case of the SAEMA-EUL which consists of main part of current passenger trains and frights in this country.

  • PDF

Effect of Metallic Tungsten Concentration on Resistance Switching Behavior of Sputtered W-doped NbOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Na, Hui-Do;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.288-288
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of W-doped NbOx films with increasing W doping concentration. The W-doped NbOx based ReRAM devices with a TiN/W-doped NbOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 50 nm thick W-doped NbOx films were deposited by reactive dc magnetron co-sputtering at $400^{\circ}C$ and oxygen partial pressure of 35%. Micro-structure of W-doped NbOx films and atomic concentration were investigated by XRD, TEM and XPS, respectively. The W-doped NbOx films showed set/reset resistance switching behavior at various W doping concentrations. The process voltage of set/reset is decreased and whereas the initial current level is increased with increasing W doping concentration in NbOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of metallic tungsten of oxygen of W-doped NbOx.

  • PDF

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

Chararcteristice of Al Depositon on Nd-based Permanent Magnet Prepared by Ion Plating (이온 플레이팅에 의한 Nd계 희토류 영구자석의 Al 증착 특성)

  • 여현동;백운승;권식철;장도연;공곤승;박동원;김대룡
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 1998
  • Al ion plating was carried to improve corrosion resistance of Nd-based permanent magnet made by prwder molding method. The effects of applied votage, pressyre and temperature were investigated to find the reation between coating parameters and their properties. Density of coating layer increased with voltage and thus corrosion resistance improved. However when voltage was applied more than 1000V, corrosion resistance whet down because of resputtering effect. Good corrosion resistance was acquired when gas pressure was $5.0\times10^-2$>torr, which is satisfied momentum energy of Ar, Al ions as well as quantity of plasma. The layer coated in low temperature range have better surface density and corrosion resistance than in high temperature. This result is seemed due to the characteristics of substrate itself. All coating layers were showed stong adhesion with substrate.

  • PDF

A Study on Fire Resistance Performance Evaluation for Field Application of Ultra-High Strength Concrete (초고강도 내화 콘크리트의 현장 적용을 위한 내화성능 평가에 관한 연구)

  • Baek, Young-Woon;Yuk, Tae-Won;Park, Dong-Soo;Kim, Han-Sol;Lee, Hang-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.41-42
    • /
    • 2023
  • The physical performance of high-strength concrete deteriorates when exposed to high temperatures such as fire. In particular, in the case of ultra-high-strength concrete, there is a high possibility of explosion due to internal water pressure and thermal expansion due to the tight internal structure. In this paper, a fire resistance certification test was conducted for field application of ultra-high-strength fire-resistant concrete, and the fire resistance performance (temperature rise of main rebar) was compared according to the structural concrete cover thickness. As a result, when the covering thickness was 40 mm, three structures did not meet the certification standards, and when the covering thickness was 50 mm, all structures met the fire resistance certification standards.

  • PDF

Effects of 8 Weeks Resistance Training on Nitric Oxide (NO) Concentration and Mean Arterial Pressure (MAP) in Young Men (건강한 젊은 성인에서 8주 규칙적인 저항성 트레이닝이 산화질소(NO) 농도와 평균동맥압(MAP)에 미치는 영향)

  • Kim, Young-Il;Paik, Il-Young;Kwak, Yi-Sub;Kim, Keun-Soo;Woo, Jin-Hee
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.625-632
    • /
    • 2009
  • The purpose of this study was to examine the effect of exercise training on nitric oxide (NO) levels, mean arterial pressure (MAP), blood pressure (BP), and heart rate (HR) in college students. 5 subjects were randomly assigned to two experimental groups; an aerobic training group (ATG) and a resistance training group (RTG). In aerobic training, based on measured maximum oxygen consumption rate, 70% exercise intensity was applied and conducted for 60 min. In resistance training, 70% of 1-RM was performed for 90 min. Blood sampling was conducted 3 times during resting state, post-exercise, and after 30 minutes of recovery. The results are as followed. For the post training values of $VO_2max$, % body fat and MAP, there were significant differences in the ATG compared to pre training (p<0.05). However, there were no differences in the RTG between pre and post training. NO increased post training, during rest and at the end of exercise compared to pre training in the ATG (p<0.05). Also, the HR decreased in post training at the end of exercise (p<0.05), however, there were no significant differences in SBP and DBP between pre and post training in the ATG. The HR, SBP and DBP did not change at all in post training compared to pre training in the RTG. In conclusion, an increase in the production of Nitric Oxide (NO) concentration and $VO_2max$, decrease of body fat% and physiological variables (HR, BP, MAP) were shown to be more effective in aerobic training (AT) than resistance training (RT).

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive (디젤전기기관차의 공압제동 영향인자 및 특성 분석)

  • Choi, Don Bum;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.541-549
    • /
    • 2018
  • This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.

A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint (방청도료의 부식특성과 염분농도의 상관관계에 관한 연구)

  • Moon, Kyung-Man;Lee, Myeong-Woo;Lee, Myeong-Hoon;Kim, Hye-Min;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.