• Title/Summary/Keyword: Pressure resistance

Search Result 2,168, Processing Time 0.028 seconds

Prediction of Pumping Friction Resistance Coefficient in Pipe Influenced by Concrete Rheology Properties (콘크리트의 레올로지 특성에 따른 펌핑관내 마찰저항계수의 예측에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyoo;Kim, Jung-Chul;Lee, Kewn-Chu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for concrete pumping performance for the rapid construction of super-tall buildings. In this study, a quantitative evaluation of concrete fluid characteristics and surface friction resistance was performed, applying different concrete mix proportions and pumping conditions. To achieve this, we developed a temporary horizontal pumping evaluation system to measure pipe pressure and surface friction characteristics, and performed an experiment to investigate the relations between concrete rheology characteristics and friction resistance in pipe. The experiment found that in terms of the rheology characteristics, plastic viscosity was reduced remarkably after pumping. As well, high regression between the surface friction and pressure gradient was confirmed. This means that it is possible to evaluate the friction resistance between concrete and pipe by means of a pumping system that includes a frictional resistance testing pipe. In addition, high regression between the plastic viscosity of concrete after pumping and friction resistance coefficient was confirmed. Finally, it is considered that pumping pressure can be predicted using the friction resistance coefficient derived in this study, and it has high regression.

Measurement of Blood Flow Variation using Impedance Method (임피던스법을 이용한 혈류량 변화 측정)

  • Jeong Do-Un;Kang Seong-Chul;Jeon Gye-Rock
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.693-696
    • /
    • 2006
  • In this study, we made the system to measure variation of blood flow using bio-electrical impedance analysis method. The system, which could measure variation of impedance according to pressure change by artificial pressure, consists of pressure measurement and impedance measurement by 4-electrode method. Pressure measurement splits into semiconducting pressure sensor and electronic circuit for processing output signal. In addition, impedance measurement splits into constant current source circuit and lock-in amplifier for detection impedance signal. We experimented feature of impedance measurement using standard resistance to evaluate the system characteristic. As well as, we experimented to estimate variation of blood flow by measuring impedance and blood flow resistance ratio using mean arterial pressure and variation of blood flow with experimental group. As result of this study, blood flow resistance ratio and variation of blood flow were definitely in inverse proportion and were -0.96776 as correlation coefficient by correlation analysis.

  • PDF

Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran

  • Yang, Jinglei;Lin, Zhuang;Li, Ping;Guo, Zhiqun;Sun, Hanbing;Yang, Dongmei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • The partial air cushion supported catamaran (PACSCAT) is a novel Surface Effect Ship (SES) and possesses distinctive resistance performance due to the presence of planing bottom. In this paper, the design of PACSCAT and air cushion system are described in detail. Model tests were carried out for Froude numbers ranging from 0.1 to 1.11, the focus is on the influence of air cushion system on resistance characteristics. Drag-reducing effect of air cushion system was proved by means of contrast tests in cuhionborne and non-cushionborne mode. Wave-making characteristics reflect that the PACSCAT would eventually enter planing regime, in which the air could just escape under the seals and the hull body could operate in a steady state. To acquire different air cushion pressure, air flow rate and leakage height were adjusted during tests. Experimental results show that the resistance performance in planing regime would decrease evidently as the increased air flow rate, however, the scheme with medium leakage height presents the best resistance performance in the hump region.

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers (I) -small scale rice polisher - (중.소형 연미기의 성능평가 및 성능개선에 관한 연구 (I) -소형 연미기에 대하여 -)

  • 정종훈;최영수;권홍관
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 1998
  • The structural characteristics of a small scale rice polisher was analyzed to improve its performance. Spraying characteristic of nozzles used for rice polishing was also analyzed by a machine vision system. The internal pressure of the polishing chamber was measured according to outlet resistance, water spraying, and roller shaft speed. In addition, the performance of the rice polisher was evaluated to improve it in the basis of internal pressure in polishing chamber, whiteness, and broken rice ratio of clean rice according to the operating conditions. Actual nozzle discharge rate and drop size were 125 cc/min and 86~97 ${\mu}{\textrm}{m}$, respectively. In the case of water spraying on rices, the internal pressure showed 4.9~9.8N/$\textrm{cm}^2$ increase. broken rice ratio decreased, and there was no difference in whiteness. The internal pressure inueased up to two times with the increase of the outlet resistance. Also, the pressure at the upper part of screen was one and half times as high as the pressure at the lower part. In the case of water spraying rate of 150 cc/min, the roller shaft speed of 850 rpm resulted in no difference in whiteness and decrease of 0.3% in broken rice ratio, comparing to the roller shaft speed of 950 rpm.

  • PDF

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers(I)-small scale rice polishers- (중.소형 연미기의 성능평가 및 성능개선에 관한 연구(I)-소형 연미기에 대하여-)

  • 정종훈;최영수;권홍관
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1998.06b
    • /
    • pp.206-216
    • /
    • 1998
  • The structural characteristics of small scale rice polisher was analyzed to improve its performance. Spraying characteristic of nozzles used for rice polishing was also analyzed by a machine vision system. The internal pressure of the polishing chamber was measured according to outlet resistance, water spraying , and roller shaft speed. In addition , the performance of the rice polisher was evaluated to improve it in the basis of internal pressure in polishing chamber, whiteness , and broken rice ratio of clean rice according to the operating conditions. Actual nozzle discharge rate and drop size were 125cc/min and 86.97㎛, respectively. In the case of water spraying on rices, the internal pressure showed 4.9-9.8N/㎠ increase, broken rice ration decreased , and there was no difference in whiteness . The internal pressure increased up to two time with the increase of the outlet resistance. Also, the pressure at the upper part of screen was one and half times as high as the pressure at the lower part. In the case of water spraying rate of 150 cc/min, the roller shaft speed of 850 rpm resulted in no difference in whiteness and decrease of 0.3%in broken rice ratio, comparing to the roller shaft speed of 950 rpm.

  • PDF

KSLV-I Kick Motor Nozzle Hydro-Pressure Test (KSLV-1 Kick Motor 노즐 수압시험)

  • Yoo, Jae-Suk;Kim, Byung-Hun;Cho, In-Hyun;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.202-209
    • /
    • 2008
  • KSLV-1 2nd stage Kick Motor Nozzle was exposed to high temperature and pressure during the firing. Under the high pressure environment, Kick Motor Nozzle hydro-pressure test was done for verifying the structural safety of the nozzle. The differences with the KM hydro-pressure test [1] are that the real immerged heat resistance material is assembled and the throat heat resistance material is similar with the real one. The hydro-pressure tests were done for the two times of the 125 % of MEOP (975 psi) and the 153 % of the MEOP.

  • PDF

A Study on the Flame Temperature Measurement of the Transiently Propagating Flame by using Platinum-Hot-Wire-Resistance-Thermometry (열선백금저항선을 이용한 과도적 전파화염의 화염온도측정에 관한 연구)

  • 정인석;조경국;황상순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.94-101
    • /
    • 1985
  • The flame temperature of LPG-air premixture flame was measured by extrapolation of limiting case corresponding to the infinitely thin diameter of Platinum-resistance-hot-wire. LPG-air premixture flame, initially under atmospheric pressure and room temperature, propagates downward from top of the model combustion chamber maintained at constant pressure through the whole combustion process. Analytical calculation technique was also applied to determine full temperature history or spatial temperature distribution from flame reaction zone to burnt gas region.

  • PDF

The Front Fairing Design of KHST Power Car (한국형 고속전철 동력차 전두부 설계)

  • 손재용;강석택;박광복
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.499-505
    • /
    • 2000
  • The shape of the KHST, and of the power car in particular, is largely determined by aerodynamic considerations. At high speeds, air resistance accounts for the major part of overall resistance to forward motion. Further points to be considered are environmentally undesirable acoustic phenomena and pressure waves. Minimizing power requirements and environmentally-unfriendly noise and pressure waves are thus major objectives in the development of the KHST. When deciding on the aerodynamic design of the power car, the entire train set has to be taken into consideration. This paper describes the design process and results about the front shape of the KHST.

  • PDF

Effect of Process Parameters on the High Speed Seam Weldability of Tin Coated Steels for the Small Containers

  • Kim, K.C.;Lee, M.Y.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • High speed seam weldability of tin coated steels was investigated. Welding was performed by the laboratory wire seam welder that was equipped with process monitoring system Test results showed that increase in applied current and pressure reduced the total resistance across the welding electrodes. Lower and upper limits of welding current increased as the sheet thickness increased, while the acceptable welding condition range decreased. However, extremely low electrode pressure produced unstable welding condition range. The results also demonstrated that slower welding speeds widened the optimum welding heat input range.

  • PDF

The Front Fairing Design of KHST Power Car (한국형 고속전철 동력차 전두부 설계)

  • 손재용;강석택;박광복
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.115-120
    • /
    • 1999
  • The shape of the KHST, and of the power car in particular. is largely determined by aerodynamic considerations. At high speeds, air resistance accounts for the major part of overall resistance to forward motion. Further points to be considered are environmentally undesirable acoustic phenomena and pressure waves. Minimizing power requirements and environmentally-unfriendly noise and pressure waves are thus major objectives in the development of the KHST. When deciding on the aerodynamic design of the power car, the entire train set has to be taken into consideration. This paper describes the design process and results about the front shape of the KHST.

  • PDF